Home
Class 12
MATHS
If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^...

If `f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2)` then the value of `f '(1) +f''(2) +f''(3)` is:

A

0

B

1

C

2

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f'(1) + f''(2) + f''(3) \) for the function \( f(x) = (x-1)^4 (x-2)^3 (x-3)^2 \). ### Step 1: Find \( f'(x) \) We will use the product rule to differentiate \( f(x) \). The product rule states that if \( f(x) = g(x) h(x) \), then \( f'(x) = g'(x) h(x) + g(x) h'(x) \). Let: - \( g(x) = (x-1)^4 \) - \( h(x) = (x-2)^3 (x-3)^2 \) Now, we need to differentiate \( g(x) \) and \( h(x) \). 1. **Differentiate \( g(x) \)**: \[ g'(x) = 4(x-1)^3 \] 2. **Differentiate \( h(x) \)** using the product rule: Let \( h_1(x) = (x-2)^3 \) and \( h_2(x) = (x-3)^2 \). - \( h_1'(x) = 3(x-2)^2 \) - \( h_2'(x) = 2(x-3) \) Now apply the product rule: \[ h'(x) = h_1'(x) h_2(x) + h_1(x) h_2'(x) = 3(x-2)^2 (x-3)^2 + (x-2)^3 \cdot 2(x-3) \] Now we can combine these to find \( f'(x) \): \[ f'(x) = g'(x) h(x) + g(x) h'(x) \] ### Step 2: Evaluate \( f'(1) \) Substituting \( x = 1 \): - \( g(1) = (1-1)^4 = 0 \) - \( h(1) = (1-2)^3 (1-3)^2 = (-1)^3 \cdot (-2)^2 = -1 \cdot 4 = -4 \) Thus: \[ f'(1) = g'(1) h(1) + g(1) h'(1) = 4(0) + 0 = 0 \] ### Step 3: Find \( f''(x) \) To find \( f''(x) \), we differentiate \( f'(x) \) again. However, we can directly evaluate \( f''(2) \) and \( f''(3) \) without finding the entire second derivative. ### Step 4: Evaluate \( f''(2) \) At \( x = 2 \): - \( g(2) = (2-1)^4 = 1 \) - \( h(2) = (2-2)^3 (2-3)^2 = 0 \) Thus: \[ f'(2) = g'(2) h(2) + g(2) h'(2) = 4(1) \cdot 0 + 1 \cdot h'(2) = h'(2) \] Since \( h(2) = 0 \), \( f'(2) = 0 \). Now, for \( f''(2) \), we note that since \( f'(2) = 0 \) and \( h(2) = 0 \), we can conclude \( f''(2) = 0 \). ### Step 5: Evaluate \( f''(3) \) At \( x = 3 \): - \( g(3) = (3-1)^4 = 16 \) - \( h(3) = (3-2)^3 (3-3)^2 = 0 \) Thus: \[ f'(3) = g'(3) h(3) + g(3) h'(3) = g(3) \cdot h'(3) \] Since \( h(3) = 0 \), \( f'(3) = 0 \). Thus, \( f''(3) = 0 \). ### Step 6: Combine the results Now we can sum the results: \[ f'(1) + f''(2) + f''(3) = 0 + 0 + 0 = 0 \] ### Final Answer The value of \( f'(1) + f''(2) + f''(3) \) is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

Let f : W-> W be a given function satisfying f(x) = f(x-1)+f(x-2) for x<=2 .If f(0)=0 and f(1)=1 , ther find the value of f(2) + f(3) + f(4) + f(5) + f(6) .

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f'(1)+f''(2)+f'''(3) is

"If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.

If a function f:RtoR is defined by f(x){{:(2x,xgt3),(x^(2),1lexle3),(3x,xlt1):} Then the value of f(-1)+f(2)+f(4) is

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |