Home
Class 12
MATHS
Let f (x)= {{:(((e ^(1/(x-2))-3))/((1)/(...

Let f (x)= `{{:(((e ^(1/(x-2))-3))/((1)/(3 ^(x-2))+1), x gt 2), ((b sin{-x})/({-x}), x lt 2),(c, x=2):},` where {.} denotes fraction part function, is continuous at `x=2,` then `b+c=`

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 2 \). This means that the left-hand limit as \( x \) approaches 2, the right-hand limit as \( x \) approaches 2, and the value of the function at \( x = 2 \) must all be equal. Given the function: \[ f(x) = \begin{cases} \frac{e^{\frac{1}{x-2}} - 3}{\frac{1}{3^{x-2}} + 1} & \text{if } x > 2 \\ \frac{b \sin(-x)}{-x} & \text{if } x < 2 \\ c & \text{if } x = 2 \end{cases} \] ### Step 1: Find the right-hand limit as \( x \) approaches 2 We need to calculate: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{e^{\frac{1}{x-2}} - 3}{\frac{1}{3^{x-2}} + 1} \] As \( x \to 2^+ \), \( x - 2 \to 0^+ \). Therefore, \( \frac{1}{x-2} \to +\infty \) and \( e^{\frac{1}{x-2}} \to +\infty \). Thus, we can simplify: \[ \lim_{x \to 2^+} f(x) = \frac{+\infty - 3}{\frac{1}{3^{0}} + 1} = \frac{+\infty}{1 + 1} = +\infty \] ### Step 2: Find the left-hand limit as \( x \) approaches 2 Next, we calculate: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{b \sin(-x)}{-x} \] As \( x \to 2^- \), \( -x \to -2 \). Thus: \[ \lim_{x \to 2^-} f(x) = \frac{b \sin(-2)}{-2} = -\frac{b \sin(2)}{2} \] ### Step 3: Set the limits equal to ensure continuity For the function to be continuous at \( x = 2 \), we need: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \] This gives us: \[ -\frac{b \sin(2)}{2} = +\infty = c \] Since \( c \) must also equal \( +\infty \), we cannot have a finite value for \( b \) that satisfies this condition unless \( b = 0 \). ### Step 4: Set \( b \) and \( c \) From the above analysis, we conclude: 1. \( b = 0 \) 2. \( c = 0 \) ### Step 5: Calculate \( b + c \) Thus: \[ b + c = 0 + 0 = 0 \] ### Final Answer The value of \( b + c \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)

undersetlim_(Xrarr2^(+)) {x}(sin(x-2))/((x-2)^(2))= (where {.} denotes the fractional part function)

The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(sin(sinx))+log_(3{x}+1)(x^2+1) , where {.} represents fractional part function, is:

lim x→(2^+) { x } sin( x−2 ) /( x−2)^2 = (where [.] denotes the fractional part function) a. 0 b. 2 c. 1 d. does not exist

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Consider a function defined in [-2,2] f (x)={{:({x}, -2 le x lt -1),( |sgn x|, -1 le x le 1),( {-x}, 1 lt x le 2):}, where {.} denotes the fractional part function. The total number of points of discontinuity of f (x) for x in[-2,2] is:

Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, then lim _(xto0), f ({(x)/(tan x)})is :({.} denotes fractional part of function)

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

Discuss the continuity of f(x)={(x{x}+1 ,, 0lt=x<1),(2-{x} ,, 1lt=x<2):} where {x} denotes the fractional part function.

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x)= {{:(((e ^(1/(x-2))-3))/((1)/(3 ^(x-2))+1), x gt 2), ((b sin...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |