Home
Class 12
MATHS
Let f(x) =(e^(tan x)-e^x+ln(secx+tanx)-x...

Let `f(x) =(e^(tan x)-e^x+ln(secx+tanx)-x)/(tanx-x)` be a continuous function at x=0. The value f(0) equals

A

a) `1/2`

B

b) `2/3`

C

c) `3/2`

D

d) `2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) for the function \[ f(x) = \frac{e^{\tan x} - e^x + \ln(\sec x + \tan x) - x}{\tan x - x} \] we need to ensure that \( f(x) \) is continuous at \( x = 0 \). This means we need to evaluate the limit as \( x \) approaches 0: \[ f(0) = \lim_{x \to 0} f(x) \] ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the function to check if it results in an indeterminate form: - \( e^{\tan(0)} = e^0 = 1 \) - \( e^0 = 1 \) - \( \tan(0) = 0 \) - \( \sec(0) = 1 \) - \( \ln(\sec(0) + \tan(0)) = \ln(1 + 0) = \ln(1) = 0 \) Substituting these values into the function gives: \[ f(0) = \frac{1 - 1 + 0 - 0}{0 - 0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have \( \frac{0}{0} \), we differentiate the numerator and the denominator separately. **Numerator:** \[ \text{Numerator} = e^{\tan x} \cdot \sec^2 x - e^x + \frac{1}{\sec x + \tan x}(\sec x \tan x + \sec^2 x) - 1 \] **Denominator:** \[ \text{Denominator} = \sec^2 x - 1 \] ### Step 3: Evaluate the limit again Now we need to evaluate: \[ \lim_{x \to 0} \frac{e^{\tan x} \sec^2 x - e^x + \frac{1}{\sec x + \tan x}(\sec x \tan x + \sec^2 x) - 1}{\sec^2 x - 1} \] Substituting \( x = 0 \) again: - \( e^{\tan(0)} = 1 \) - \( \sec^2(0) = 1 \) - The numerator becomes \( 1 \cdot 1 - 1 + \frac{1}{1 + 0}(0 + 1) - 1 = 1 - 1 + 1 - 1 = 0 \) - The denominator becomes \( 1 - 1 = 0 \) We still have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 4: Differentiate Again We differentiate the numerator and denominator once more and evaluate the limit again. After differentiating and simplifying, we can find the limit as \( x \to 0 \). ### Step 5: Final Limit Evaluation After applying L'Hôpital's Rule multiple times and simplifying, we find: \[ \lim_{x \to 0} f(x) = \frac{3}{2} \] Thus, the value of \( f(0) \) is: \[ \boxed{\frac{3}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

lim_(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

Let f(x) = (e^x x cosx-x log_e(1+x)-x)/x^2, x!=0. If f(x) is continuous at x = 0, then f(0) is equal to

If f(x)=((1-tanx)/(1+sinx))^(cosec x) is to be made continuous at x=0, then f(0) must be equal to

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

Find f'(x) if f(x) = (tanx)^(tanx)

Let f(x)= {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

If f(x)=(tan(pi/4+(log)_e x))^((log)_x e) is to be made continuous at x=1, then what is the value of f(1)?

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f(x) =(e^(tan x)-e^x+ln(secx+tanx)-x)/(tanx-x) be a continuous fun...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |