Home
Class 12
MATHS
Let f (x)= {((1+ax )^(1//x), x lt 0),( (...

Let `f (x)= {((1+ax )^(1//x), x lt 0),( ((x+c)^(1//3)-1)/((x+1)^(1//2) -1), x gt 0):},` is continous at `x=0,` then `3 (e ^(a)+b+c)` is equal to:

A

3

B

6

C

7

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 0 \). This means that the left-hand limit as \( x \) approaches 0 from the negative side must equal the right-hand limit as \( x \) approaches 0 from the positive side, and both must equal \( f(0) \). Given: \[ f(x) = \begin{cases} (1 + ax)^{1/x}, & x < 0 \\ \frac{(x + c)^{1/3} - 1}{(x + 1)^{1/2} - 1}, & x > 0 \end{cases} \] ### Step 1: Calculate the left-hand limit as \( x \to 0^- \) For \( x < 0 \): \[ f(x) = (1 + ax)^{1/x} \] We need to find: \[ \lim_{x \to 0^-} (1 + ax)^{1/x} \] Using the standard limit: \[ \lim_{x \to 0} (1 + u)^{1/u} = e \quad \text{where } u = ax \text{ as } x \to 0 \] Thus, we have: \[ \lim_{x \to 0^-} (1 + ax)^{1/x} = e^{\lim_{x \to 0} \frac{ax}{x}} = e^a \] ### Step 2: Calculate the right-hand limit as \( x \to 0^+ \) For \( x > 0 \): \[ f(x) = \frac{(x + c)^{1/3} - 1}{(x + 1)^{1/2} - 1} \] We need to find: \[ \lim_{x \to 0^+} \frac{(x + c)^{1/3} - 1}{(x + 1)^{1/2} - 1} \] Substituting \( x = 0 \): \[ = \frac{(0 + c)^{1/3} - 1}{(0 + 1)^{1/2} - 1} = \frac{c^{1/3} - 1}{1 - 1} \text{ (which is } \frac{0}{0} \text{ form)} \] ### Step 3: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: \[ \text{Differentiate the numerator and denominator:} \] Numerator: \[ \frac{d}{dx}[(x + c)^{1/3}] = \frac{1}{3}(x + c)^{-2/3} \] Denominator: \[ \frac{d}{dx}[(x + 1)^{1/2}] = \frac{1}{2}(x + 1)^{-1/2} \] Thus, \[ \lim_{x \to 0^+} \frac{(x + c)^{1/3} - 1}{(x + 1)^{1/2} - 1} = \lim_{x \to 0} \frac{\frac{1}{3}(x + c)^{-2/3}}{\frac{1}{2}(x + 1)^{-1/2}} = \lim_{x \to 0} \frac{2}{3} \cdot \frac{(x + 1)^{1/2}}{(x + c)^{2/3}} \] Substituting \( x = 0 \): \[ = \frac{2}{3} \cdot \frac{1}{c^{2/3}} \] ### Step 4: Set the limits equal for continuity For \( f(x) \) to be continuous at \( x = 0 \): \[ e^a = \frac{2}{3c^{2/3}} \] ### Step 5: Solve for \( c \) To ensure the limit exists, we need \( c \) to be such that the numerator approaches 0 when \( x \to 0 \): \[ c = 1 \] Substituting \( c = 1 \): \[ e^a = \frac{2}{3 \cdot 1^{2/3}} \Rightarrow e^a = \frac{2}{3} \] ### Step 6: Final Calculation Now, we need to find \( 3(e^a + b + c) \): \[ 3\left(\frac{2}{3} + b + 1\right) = 3\left(\frac{2}{3} + b + 1\right) = 3\left(\frac{2}{3} + b + \frac{3}{3}\right) = 3\left(\frac{5}{3} + b\right) = 5 + 3b \] ### Conclusion Thus, the final answer is: \[ 3(e^a + b + c) = 5 + 3b \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f (x)=[{:((a (1-x sin x)+ b cos x +5)/(x ^(2)),,, x lt 0), ((1+ ((dx + dx ^(3))/(dx ^(2))))^(1/x),,, x gt 0):} If f is continous at x=0 then correct statement (s) is/are:

Let f (x)=[{:((a (1-x sin x)+ b cos x +5)/(x ^(2)),,, x lt 0), ((1+ ((dx + dx ^(3))/(dx ^(2))))^(1/x),,, x gt 0):} If f is continous at x=0 then correct statement (s) is/are:

Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x = 0),([1 + ((cx + dx^(3))/(x^(2)))]^(1//x)",",x gt 0):} If f is continuous at x = 0, then (a + b + c + d) is

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0, find a + 2b .

If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt 0):}

Let f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x^(2))),,,,xne0),(e^(-K//2),,,,x=0):} if f(x) is continous at x=0 then the value of k is (a) 1 (b) 2 (c) 3 (d) 4

If the function f(x)= {(3ax +b", " x gt 1 ),(11 ", "x=1),(5 ax-2b", " x lt 1):} continuous at x= 1 then ( a, b) =?

let f(x)={(ax+1, if x le 1),(3, if x=1),(bx^2+1,if x > 1)) if f(x) is continuous at x=1 then value of a-b is (A) 0 (B) 1 (C) 2 (D) 4

If F (x) = {{:(-x^(2) + 1, x lt 0),(0,x = 0),(x^(2) + 1,x gt = 0):} , .then lim_(x to 0) f(x) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x)= {((1+ax )^(1//x), x lt 0),( ((x+c)^(1//3)-1)/((x+1)^(1//2) ...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |