Home
Class 12
MATHS
sqrt(x+y)+sqrt(y-x)=c , then (d^2y...

`sqrt(x+y)+sqrt(y-x)=c , then (d^2y)/(dx^2)` equals

A

`2/c`

B

`-2/c^2`

C

`2/c^2`

D

`None of these`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start with the given equation and proceed to find the second derivative of \( y \) with respect to \( x \). **Step 1: Start with the given equation.** \[ \sqrt{x+y} + \sqrt{y-x} = c \] **Step 2: Square both sides to eliminate the square roots.** \[ (\sqrt{x+y} + \sqrt{y-x})^2 = c^2 \] Expanding the left side using the identity \( (a+b)^2 = a^2 + 2ab + b^2 \): \[ (x+y) + (y-x) + 2\sqrt{(x+y)(y-x)} = c^2 \] This simplifies to: \[ 2y + 2\sqrt{(x+y)(y-x)} = c^2 \] **Step 3: Isolate the square root term.** \[ 2\sqrt{(x+y)(y-x)} = c^2 - 2y \] Dividing both sides by 2: \[ \sqrt{(x+y)(y-x)} = \frac{c^2 - 2y}{2} \] **Step 4: Square both sides again to eliminate the square root.** \[ (x+y)(y-x) = \left(\frac{c^2 - 2y}{2}\right)^2 \] Expanding the left side: \[ xy - x^2 + y^2 - xy = \frac{(c^2 - 2y)^2}{4} \] This simplifies to: \[ y^2 - x^2 = \frac{(c^2 - 2y)^2}{4} \] **Step 5: Multiply through by 4 to eliminate the fraction.** \[ 4(y^2 - x^2) = (c^2 - 2y)^2 \] **Step 6: Differentiate both sides with respect to \( x \).** Using implicit differentiation: \[ 4(2y \frac{dy}{dx} - 2x) = 2(c^2 - 2y)(-2\frac{dy}{dx}) \] This simplifies to: \[ 8y \frac{dy}{dx} - 8x = -4(c^2 - 2y) \frac{dy}{dx} \] **Step 7: Rearrange to solve for \( \frac{dy}{dx} \).** \[ 8y \frac{dy}{dx} + 4(c^2 - 2y) \frac{dy}{dx} = 8x \] Factoring out \( \frac{dy}{dx} \): \[ \left(8y + 4(c^2 - 2y)\right) \frac{dy}{dx} = 8x \] Thus, \[ \frac{dy}{dx} = \frac{8x}{8y + 4(c^2 - 2y)} = \frac{2x}{c^2 + 2y} \] **Step 8: Differentiate again to find \( \frac{d^2y}{dx^2} \).** Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(c^2 + 2y)(2) - 2x(2\frac{dy}{dx})}{(c^2 + 2y)^2} \] Substituting \( \frac{dy}{dx} = \frac{2x}{c^2 + 2y} \): \[ \frac{d^2y}{dx^2} = \frac{2(c^2 + 2y) - 2x\left(2\frac{2x}{c^2 + 2y}\right)}{(c^2 + 2y)^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{2(c^2 + 2y) - \frac{8x^2}{c^2 + 2y}}{(c^2 + 2y)^2} \] After simplification, we find: \[ \frac{d^2y}{dx^2} = \frac{2}{c^2} \] **Final Answer:** \[ \frac{d^2y}{dx^2} = \frac{2}{c^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If sqrt(y+x)+sqrt(y-x)=c, where cne0 , then (dy)/(dx) has the value equal to

If sqrt(x/y)+sqrt(y/x)=1 , then dy/dx

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)) ,then (dy)/(dx) is equal to (a) (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (c) (a y)/(xsqrt(a^2-x^2)) (d) none of these

If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))) , then (dy)/(dx) is equal to

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a) (e^(sqrt(x)))/(2sqrt(x)) (b) (e^(sqrt(x))-e^(-sqrt(x)))/(2sqrtx) 1/(2sqrt(x))sqrt(y^2-4) (d) 1/(2sqrt(x))sqrt(y^2+4)

If x=sqrt(1-y^2) , then (dy)/(dx)=

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. sqrt(x+y)+sqrt(y-x)=c , then (d^2y)/(dx^2) equals

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |