Home
Class 12
MATHS
Let f is twice differerntiable on R such...

Let f is twice differerntiable on R such that `f (0)=1, f'(0) =0 and f''(0) =-1,` then for `a in R, lim _(xtooo) (f((a)/(sqrtx)))^(x)=`

A

`e ^(-e ^(2))`

B

`e ^((a^(2))/(4))`

C

`e ^(-(a^(2))/(2))`

D

`e ^(-2a ^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ L = \lim_{x \to \infty} \left( f\left(\frac{a}{\sqrt{x}}\right) \right)^{x} \] Given that \( f(0) = 1 \), \( f'(0) = 0 \), and \( f''(0) = -1 \), we can analyze the limit step by step. ### Step 1: Identify the indeterminate form First, we substitute \( x \to \infty \): \[ \frac{a}{\sqrt{x}} \to 0 \quad \text{as} \quad x \to \infty \] Thus, we have: \[ f\left(\frac{a}{\sqrt{x}}\right) \to f(0) = 1 \] This gives us: \[ L = \lim_{x \to \infty} \left( f\left(\frac{a}{\sqrt{x}}\right) \right)^{x} = 1^{\infty} \] This is an indeterminate form. ### Step 2: Use the exponential limit transformation We can use the property of limits for indeterminate forms: \[ L = e^{\lim_{x \to \infty} \left( f\left(\frac{a}{\sqrt{x}}\right) - 1 \right) \cdot x} \] ### Step 3: Expand \( f\left(\frac{a}{\sqrt{x}}\right) \) using Taylor series Since \( f \) is twice differentiable at \( 0 \), we can use the Taylor series expansion around \( 0 \): \[ f\left(\frac{a}{\sqrt{x}}\right) = f(0) + f'(0) \cdot \frac{a}{\sqrt{x}} + \frac{f''(0)}{2} \left(\frac{a}{\sqrt{x}}\right)^2 + o\left(\left(\frac{a}{\sqrt{x}}\right)^2\right) \] Substituting the known values: \[ = 1 + 0 \cdot \frac{a}{\sqrt{x}} - \frac{1}{2} \cdot \frac{a^2}{x} + o\left(\frac{1}{x}\right) \] Thus, we have: \[ f\left(\frac{a}{\sqrt{x}}\right) - 1 \approx -\frac{a^2}{2x} \] ### Step 4: Substitute back into the limit Now, substituting this back into our limit: \[ L = e^{\lim_{x \to \infty} \left(-\frac{a^2}{2x}\right) \cdot x} \] This simplifies to: \[ L = e^{\lim_{x \to \infty} -\frac{a^2}{2}} = e^{-\frac{a^2}{2}} \] ### Final Answer Thus, the limit is: \[ \boxed{e^{-\frac{a^2}{2}}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a twice differentiable function such that f(0)=f(1)=f(2)=0 . Then

Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = 0 and f'(0)=3 ,then

Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = 0 and f'(0)=3 ,then

Let f : R rarr R be a differentiable function at x = 0 satisfying f(0) = 0 and f'(0) = 1, then the value of lim_(x to 0) (1)/(x) . sum_(n=1)^(oo)(-1)^(n).f((x)/(n)) , is

If f(x) is continuous and differerntiable function such that f((1)/(n))=0 for all n in N , then

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2 and f(1)=1, then

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then f(x) is

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f: \mathbb{R} rarr \mathbb{R} be a twice differentiable function such that f(x+pi)=f(x) and f''(x) + f(x) geq 0 for all x in \mathbb{R} . Show that f(x) geq 0 for all x in \mathbb{R} .

Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously differentiable function with f'(x)ne0 and satisfies f(0) = 1 and f'(0) = 2 then lim_(xrarr0) (f(x)-1)/(x) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f is twice differerntiable on R such that f (0)=1, f'(0) =0 and f'...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |