Home
Class 12
MATHS
Let f (1)(x) =e ^(x) and f (n+1) (x) =e ...

Let `f _(1)(x) =e ^(x) and f _(n+1) (x) =e ^(f _(n)(x)))` for any `n ge 1, n in N.`Then for any fixed n, the vlaue of `(d)/(dx) f )(n)(x)` equals:

A

`f _(n )(x)`

B

`f _(n)(x) f _(n-1) (x)…..f_(2)(x) f _(2)(x)`

C

`f _(n)(x)f _(n-1) (x)`

D

`f _(n)(x) f _(n-1) (x)…..f _(2)(x) f_(1)(x) e ^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f_n(x) \) defined recursively as follows: 1. \( f_1(x) = e^x \) 2. \( f_{n+1}(x) = e^{f_n(x)} \) for \( n \geq 1 \) We want to compute \( \frac{d}{dx} f_n(x) \). ### Step-by-Step Solution: **Step 1: Understand the recursive definition** - We know that \( f_1(x) = e^x \). - For \( n = 1 \), \( f_2(x) = e^{f_1(x)} = e^{e^x} \). - For \( n = 2 \), \( f_3(x) = e^{f_2(x)} = e^{e^{e^x}} \). - Continuing this pattern, we can see that each \( f_n(x) \) is an exponential tower of \( e \) functions. **Step 2: Differentiate \( f_n(x) \)** - We apply the chain rule for differentiation: \[ \frac{d}{dx} f_n(x) = \frac{d}{dx} e^{f_{n-1}(x)} = e^{f_{n-1}(x)} \cdot \frac{d}{dx} f_{n-1}(x) \] **Step 3: Apply the differentiation recursively** - Now, we can express the derivative of \( f_n(x) \) in terms of \( f_{n-1}(x) \): \[ \frac{d}{dx} f_n(x) = e^{f_{n-1}(x)} \cdot \frac{d}{dx} f_{n-1}(x) \] - If we differentiate \( f_{n-1}(x) \) similarly, we get: \[ \frac{d}{dx} f_{n-1}(x) = e^{f_{n-2}(x)} \cdot \frac{d}{dx} f_{n-2}(x) \] **Step 4: Continue this process** - Continuing this process, we can see that: \[ \frac{d}{dx} f_n(x) = e^{f_{n-1}(x)} \cdot e^{f_{n-2}(x)} \cdots e^{f_1(x)} \cdot \frac{d}{dx} f_1(x) \] - Since \( f_1(x) = e^x \), we have: \[ \frac{d}{dx} f_1(x) = e^x \] **Step 5: Substitute back** - Thus, we can express \( \frac{d}{dx} f_n(x) \) as: \[ \frac{d}{dx} f_n(x) = e^{f_{n-1}(x)} \cdot e^{f_{n-2}(x)} \cdots e^{f_1(x)} \cdot e^x \] **Step 6: Final expression** - This leads us to the final expression: \[ \frac{d}{dx} f_n(x) = e^{f_{n-1}(x) + f_{n-2}(x) + \ldots + f_1(x) + x} \] ### Conclusion: The value of \( \frac{d}{dx} f_n(x) \) is: \[ \frac{d}{dx} f_n(x) = e^{f_{n-1}(x) + f_{n-2}(x) + \ldots + f_1(x) + x} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f _(1) (x)=f (x), f_(n) (x)=f (f _(n-1) (x))) for pige 2, n in N, then f _(2008) (x)+ f _(2009) (x)=

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

Le the be a real valued functions satisfying f(x+1) + f(x-1) = 2 f(x) for all x, y in R and f(0) = 0 , then for any n in N , f(n) =

Let f(x)=(x-1)(x-2)(x-3)(x-n),n in N ,a n df(n)=5040. Then the value of n is________

Let f(x)=(x-1)(x-2)(x-3)(x-n),n in N ,a n df(n)=5040. Then the value of n is________

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

If f(x) = n , where n is an integer such that n le x lt n +1 , the range of f(x) is

Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n ge 2, f^(n+1)(x)=f(f^(n)(x))." If " lambda =lim_(n to oo) f^(n)(x), then

Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times")underbrace(fofo ..."of"(x)) , then int x^(n-2)g(x)dx equals to

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (1)(x) =e ^(x) and f (n+1) (x) =e ^(f (n)(x))) for any n ge 1, n...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |