Home
Class 12
MATHS
If y =tan ^(-1)((x ^(1//3) -a^(1//3))/(1...

If `y =tan ^(-1)((x ^(1//3) -a^(1//3))/(1+x ^(1//3)a ^(1//3))), x gt 0, a gt 0, then (dy)/(dx)` is:

A

`(1)/(x ^(2//3)(1+ x ^(2//3)))`

B

`(3)/(x ^(2//3)(1+ x ^(2//3)))`

C

`(1)/(3x ^(2//3)(1+ x ^(2//3)))`

D

`(1)/(3x ^(1//3)(1+ x ^(2//3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \tan^{-1}\left(\frac{x^{1/3} - a^{1/3}}{1 + x^{1/3} a^{1/3}}\right) \] where \( x > 0 \) and \( a > 0 \), we can follow these steps: ### Step 1: Rewrite the function using the formula for the difference of arctangents We can use the identity: \[ \tan^{-1}(u) - \tan^{-1}(v) = \tan^{-1}\left(\frac{u - v}{1 + uv}\right) \] In our case, let \( u = x^{1/3} \) and \( v = a^{1/3} \). Thus, we can write: \[ y = \tan^{-1}(x^{1/3}) - \tan^{-1}(a^{1/3}) \] ### Step 2: Differentiate \( y \) with respect to \( x \) Now, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx} \left(\tan^{-1}(x^{1/3})\right) - \frac{d}{dx} \left(\tan^{-1}(a^{1/3})\right) \] Since \( a^{1/3} \) is a constant, its derivative is 0. Therefore: \[ \frac{dy}{dx} = \frac{d}{dx} \left(\tan^{-1}(x^{1/3})\right) \] ### Step 3: Use the derivative of the arctangent function The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] Here, \( u = x^{1/3} \). We need to find \( \frac{du}{dx} \): \[ u = x^{1/3} \quad \Rightarrow \quad \frac{du}{dx} = \frac{1}{3} x^{-2/3} \] ### Step 4: Substitute back into the derivative formula Now we substitute \( u \) and \( \frac{du}{dx} \) back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{1 + (x^{1/3})^2} \cdot \frac{1}{3} x^{-2/3} \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{1 + x^{2/3}} \cdot \frac{1}{3} x^{-2/3} \] ### Step 5: Final expression Thus, we can write: \[ \frac{dy}{dx} = \frac{1}{3} \cdot \frac{x^{-2/3}}{1 + x^{2/3}} = \frac{1}{3} \cdot \frac{1}{x^{2/3}(1 + x^{2/3})} \] ### Final Answer The final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{3} \cdot \frac{1}{x^{2/3}(1 + x^{2/3})} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1){(x^(1//3)+a^(1//3))/(1-(a x)^(1//3))} with respect to x

If tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0 , then x = ?

If y = tan^(-1) ((1)/(x^(2) + x + 1)) + tan^(-1) ((1)/( x^(2) + 3x + 3)) + tan^(-1) ((1)/( x^(2) + 5x + 7))+ tan^(-1) ((1)/( x^(2) +7x + 13)), x gt 0 and ((dy)/( dx))_(x=0)= ( - k )/( 1+ k) then the value of k is

Let f (x)= {((1+ax )^(1//x), x lt 0),( ((x+c)^(1//3)-1)/((x+1)^(1//2) -1), x gt 0):}, is continous at x=0, then 3 (e ^(a)+b+c) is equal to:

If y = tan^(-1)( sqrt((x+1)/(x-1))) " for " |x| gt 1 " then " (dy)/(dx) =

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1 , find x- (1)/(x)

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)

If y= "tan"^(-1) (4x)/(1+5x^(2)) + "tan"^(-1) (2 + 3x)/(3-2x) , then prove that (dy)/(dx)= (5)/(1+25x^(2))

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If y =tan ^(-1)((x ^(1//3) -a^(1//3))/(1+x ^(1//3)a ^(1//3))), x gt 0,...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |