Home
Class 12
MATHS
The value of k + f(0) so that f (x)={{:...

The value of `k + f(0) ` so that `f (x)={{:((sin (4k-1)x)/(3x)"," , x lt 0),((tan (4k +1)x )/(5x)"," , 0 lt x lt (pi)/(2)), ( 1"," , x =0):}` can bemade continous at `x=0` is:

A

1

B

2

C

`5/4`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k + f(0) \) such that the function \[ f(x) = \begin{cases} \frac{\sin((4k-1)x)}{3x} & \text{if } x < 0 \\ \frac{\tan((4k+1)x)}{5x} & \text{if } 0 < x < \frac{\pi}{2} \\ 1 & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to ensure that the left-hand limit, the value of the function at \( x = 0 \), and the right-hand limit are all equal. ### Step 1: Find the left-hand limit as \( x \to 0^- \) The left-hand limit is given by: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sin((4k-1)x)}{3x} \] Using the limit property \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we can rewrite this limit as: \[ \lim_{x \to 0^-} \frac{\sin((4k-1)x)}{(4k-1)x} \cdot \frac{(4k-1)}{3} = \frac{4k-1}{3} \] ### Step 2: Find the right-hand limit as \( x \to 0^+ \) The right-hand limit is given by: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\tan((4k+1)x)}{5x} \] Using the limit property \( \lim_{x \to 0} \frac{\tan x}{x} = 1 \), we can rewrite this limit as: \[ \lim_{x \to 0^+} \frac{\tan((4k+1)x)}{(4k+1)x} \cdot \frac{(4k+1)}{5} = \frac{4k+1}{5} \] ### Step 3: Set the limits equal to \( f(0) \) Since \( f(0) = 1 \), we set up the following equations: 1. Left-hand limit: \( \frac{4k-1}{3} = 1 \) 2. Right-hand limit: \( \frac{4k+1}{5} = 1 \) ### Step 4: Solve the equations **From the left-hand limit:** \[ \frac{4k-1}{3} = 1 \implies 4k - 1 = 3 \implies 4k = 4 \implies k = 1 \] **From the right-hand limit:** \[ \frac{4k+1}{5} = 1 \implies 4k + 1 = 5 \implies 4k = 4 \implies k = 1 \] Both limits give us \( k = 1 \). ### Step 5: Calculate \( k + f(0) \) Now we find \( k + f(0) \): \[ k + f(0) = 1 + 1 = 2 \] ### Final Answer Thus, the value of \( k + f(0) \) that makes the function continuous at \( x = 0 \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Solve: tan 3x = cot 5x , ( 0 lt x lt 2pi).

If sec x cos 5x=-1 and 0 lt x lt (pi)/(4) , then x is equal to

{{:((x)/(|x|)","if x lt 0 ),(-1"," if x ge 0 ):} Check continuity of f(x) at x = 0

Find k, if possible, so that f (x)= [{:((ln (2- cos 2x))/(ln ^(2) (1+ sin 3x)),,, x lt 0),(k,,, x=0),((e ^(sin 2x )-1)/(ln (1+ tan 9x)),,, x gt 0):} is continious at x=0.

If f(x)={:{(1+sin x", " 0 le x lt pi//2),(" "1 ", " x lt0):} then show that f'(0) does not exist.

f(x) = {{:(("tan"((pi)/(4)+x))^(1//x)",",x ne 0),(k",",x = 0):} for what value of k, f(x) is continuous at x = 0 ?

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0, find a + 2b .

The value of k for which f(x)= {((1-cos 2x )/(x^2 )", " x ne 0 ),(k ", "x=0):} continuous at x=0, is :

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of k + f(0) so that f (x)={{:((sin (4k-1)x)/(3x)"," , x lt ...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |