Home
Class 12
MATHS
Let f(x) = (e^x x cosx-x loge(1+x)-x)/x^...

Let `f(x) = (e^x x cosx-x log_e(1+x)-x)/x^2, x!=0.` If `f(x)` is continuous at `x = 0,` then `f(0)` is equal to

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( f(0) \) for the function \[ f(x) = \frac{e^x x \cos x - x \log(1+x) - x}{x^2}, \quad x \neq 0, \] we need to ensure that \( f(x) \) is continuous at \( x = 0 \). This requires us to find the limit of \( f(x) \) as \( x \) approaches 0. ### Step 1: Expand the functions using Taylor series We will use the Taylor series expansions for \( e^x \), \( \cos x \), and \( \log(1+x) \): 1. **For \( e^x \)**: \[ e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4) \] 2. **For \( \cos x \)**: \[ \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + O(x^6) \] 3. **For \( \log(1+x) \)**: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + O(x^5) \] ### Step 2: Substitute the expansions into \( f(x) \) Now, substituting these expansions into \( f(x) \): \[ f(x) = \frac{\left(1 + x + \frac{x^2}{2} + O(x^3)\right) x \left(1 - \frac{x^2}{2} + O(x^4)\right) - x\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + O(x^5)\right) - x}{x^2} \] ### Step 3: Simplify the numerator Calculating the first term: \[ e^x x \cos x = \left(1 + x + \frac{x^2}{2} + O(x^3)\right) x \left(1 - \frac{x^2}{2} + O(x^4)\right) \] \[ = x + x^2 + \frac{x^3}{2} - \frac{x^3}{2} + O(x^4) = x + x^2 + O(x^4) \] Now for the second term: \[ -x \log(1+x) = -x\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + O(x^5)\right) = -x^2 + \frac{x^3}{2} - \frac{x^4}{4} + O(x^5) \] Putting these together: \[ f(x) = \frac{x + x^2 + O(x^4) - (-x^2 + \frac{x^3}{2} - \frac{x^4}{4} + O(x^5)) - x}{x^2} \] \[ = \frac{x + x^2 + x^2 - \frac{x^3}{2} + \frac{x^4}{4} + O(x^4) - x}{x^2} \] \[ = \frac{2x^2 - \frac{x^3}{2} + O(x^4)}{x^2} \] \[ = 2 - \frac{x}{2} + O(x^2) \] ### Step 4: Take the limit as \( x \to 0 \) Now, we take the limit as \( x \) approaches 0: \[ \lim_{x \to 0} f(x) = 2 - \frac{0}{2} + O(0^2) = 2 \] ### Step 5: Conclusion Thus, for \( f(x) \) to be continuous at \( x = 0 \), we define: \[ f(0) = \lim_{x \to 0} f(x) = 2 \] ### Final Answer Therefore, \( f(0) = 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x-e^(x) + cos 2x)/(x^(2)), x ne 0 is continuous at x = 0, then

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

If f(x)=(sin^(- 1)x)^2*cos(1/ x)"if"x!=0;f(0)=0,f(x) is continuous at x= 0 or not ?

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

If f(x)=log|2x|,xne0 then f'(x) is equal to

The function f(x)={sinx/x +cosx , x!=0 and f(x) =k at x=0 is continuous at x=0 then find the value of k

If f(x)={(1-cosx)/(x^2)\ \ \ ,\ \ \ x!=0k\ \ \ ,\ \ \ x=0 is continuous at x=0 , find kdot

Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

Let f(x)={{:((log(1+ax)-log(1-bx))/x, x ne 0), (k,x=0):} . Find 'k' so that f(x) is continuous at x = 0.

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f(x) = (e^x x cosx-x loge(1+x)-x)/x^2, x!=0. If f(x) is continuous...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |