Home
Class 12
MATHS
Let g be the inverse function of a diffe...

Let g be the inverse function of a differentiable function f and `G (x) =(1)/(g (x)).` If `f (4) =2` and `f '(4) =(1)/(16),` then the value of `(G'(2))^(2)` equals to:

A

1

B

4

C

16

D

64

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( (G'(2))^2 \), where \( G(x) = \frac{1}{g(x)} \) and \( g \) is the inverse function of \( f \). We are given that \( f(4) = 2 \) and \( f'(4) = \frac{1}{16} \). ### Step-by-Step Solution: 1. **Understanding the relationship between \( f \) and \( g \)**: Since \( g \) is the inverse of \( f \), we have: \[ g(f(x)) = x \] and \[ f(g(x)) = x \] 2. **Differentiating the inverse function**: By differentiating \( f(g(x)) = x \) with respect to \( x \), we apply the chain rule: \[ f'(g(x)) \cdot g'(x) = 1 \] This gives us: \[ g'(x) = \frac{1}{f'(g(x))} \] 3. **Finding \( g(2) \)**: We know from the problem statement that \( f(4) = 2 \). Since \( g \) is the inverse of \( f \), we have: \[ g(2) = 4 \] 4. **Finding \( g'(2) \)**: Now we can find \( g'(2) \) using the formula derived in step 2: \[ g'(2) = \frac{1}{f'(g(2))} \] Substituting \( g(2) = 4 \): \[ g'(2) = \frac{1}{f'(4)} \] Given that \( f'(4) = \frac{1}{16} \): \[ g'(2) = \frac{1}{\frac{1}{16}} = 16 \] 5. **Calculating \( (G'(2))^2 \)**: We know that \( G(x) = \frac{1}{g(x)} \). To find \( G'(x) \), we use the quotient rule: \[ G'(x) = -\frac{g'(x)}{(g(x))^2} \] Substituting \( x = 2 \): \[ G'(2) = -\frac{g'(2)}{(g(2))^2} = -\frac{16}{(4)^2} = -\frac{16}{16} = -1 \] 6. **Final calculation**: Now we find \( (G'(2))^2 \): \[ (G'(2))^2 = (-1)^2 = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :

Let f be the continuous and differentiable function such that f(x)=f(2-x), forall x in R and g(x)=f(1+x), then

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

Let f : (-5,5)rarrR be a differentiable function of with f(4) = 1, f'(4)=1, f(0) = -1 and f'(0) = If g(x)=(f(2f^(2)(x)+2))^(2), then g'(0) equals

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let g be the inverse function of a differentiable function f and G (x)...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |