Home
Class 12
MATHS
Statement.1 : The function f (x) =lim (x...

Statement.1 : The function `f (x) =lim _(xtooo) (log _(e)(1+x) -x ^(2n) sin (2x))/(1+ x ^(2n))` is discontinuous at `x=1`
Statement.2: `L.H.L. =R.H.L.ne f (1).`

A

a) Statement:1 is ture , Statement:2 is true and Statement:2 is correct explanation for Statement-1

B

b) Statement-1 is true, Statement-2 is true and Statement-2 is not the correct explanation for Statemetn-1

C

c) Statement-1 is true, Statement-2 is false

D

d) Statement-1 is false, Statement-2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given in Statement 1 and check its continuity at \( x = 1 \). ### Step-by-Step Solution: 1. **Define the Function**: We have the function \[ f(x) = \lim_{x \to 0} \frac{\log_e(1+x) - x^{2n} \sin(2x)}{1 + x^{2n}}. \] 2. **Evaluate the Left-Hand Limit (LHL)**: To find the left-hand limit as \( x \) approaches 1 from the left (\( x \to 1^{-} \)): \[ LHL = \lim_{x \to 1^{-}} \frac{\log_e(1+x) - x^{2n} \sin(2x)}{1 + x^{2n}}. \] Substitute \( x = 1 \): \[ LHL = \frac{\log_e(2) - 1^{2n} \sin(2)}{1 + 1^{2n}} = \frac{\log_e(2) - \sin(2)}{2}. \] 3. **Evaluate the Right-Hand Limit (RHL)**: Now, we find the right-hand limit as \( x \) approaches 1 from the right (\( x \to 1^{+} \)): \[ RHL = \lim_{x \to 1^{+}} \frac{\log_e(1+x) - x^{2n} \sin(2x)}{1 + x^{2n}}. \] Substitute \( x = 1 \): \[ RHL = \frac{\log_e(2) - 1^{2n} \sin(2)}{1 + 1^{2n}} = \frac{\log_e(2) - \sin(2)}{2}. \] 4. **Check Continuity**: To check if \( f(x) \) is continuous at \( x = 1 \), we need to compare the limits: \[ LHL = RHL = \frac{\log_e(2) - \sin(2)}{2}. \] Now we need to find \( f(1) \): \[ f(1) = \lim_{x \to 1} \frac{\log_e(1+x) - x^{2n} \sin(2x)}{1 + x^{2n}}. \] Substitute \( x = 1 \): \[ f(1) = \frac{\log_e(2) - \sin(2)}{2}. \] 5. **Conclusion**: Since \( LHL = RHL = f(1) \), the function is continuous at \( x = 1 \). Therefore, Statement 1 is false. 6. **Evaluate Statement 2**: Statement 2 claims that \( LHL \neq RHL \) and \( f(1) \). Since we found that \( LHL = RHL = f(1) \), Statement 2 is also false. ### Final Answer: - Statement 1 is false. - Statement 2 is false.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

Discuss the continuity of the function f(x) = underset(n rarr oo)(lim) (log (2 + x)-x^(2n) sin x)/(1+x^(2n))"at x" = 1

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

The value of lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n)) (where n in N ) is

Discuss the continuity of f(x)=(lim)_(n->oo)(x^(2n)-1)/(x^(2n)+1)

Let function f be defined as f:R^(+)toR^(+) and function g is defined as g:R^(+)toR^(+) . Functions f and g are continuous in their domain. Suppose, the function h(x)=lim_(ntooo)(x^(n)f(x)+x^(2))/(x^(n)+g(x)), x gt0 . If h(x) is continuous in its domain,then f(1).g(1) is equal to (a) 2 (b) 1 (c) 1/2 (d) 0

If lim_(xtooo)x-x^(2) ln(1+1/x)=l then evaluate (25)^(l) .

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Statement.1 : The function f (x) =lim (xtooo) (log (e)(1+x) -x ^(2n) s...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |