Home
Class 12
MATHS
Find k, if possible, so that f (x)= [{...

Find k, if possible, so that
`f (x)= [{:((ln (2- cos 2x))/(ln ^(2) (1+ sin 3x)),,, x lt 0),(k,,, x=0),((e ^(sin 2x )-1)/(ln (1+ tan 9x)),,, x gt 0):}` is continious at `x=0.`

A

`2/3`

B

`1/9`

C

`2/9`

D

not possible

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{\ln(2 - \cos(2x))}{\ln^2(1 + \sin(3x)) & \text{if } x < 0 \\ k & \text{if } x = 0 \\ \frac{e^{\sin(2x)} - 1}{\ln(1 + \tan(9x)) & \text{if } x > 0 \end{cases} \] is continuous at \( x = 0 \), we need to ensure that the left-hand limit (LHL) and right-hand limit (RHL) at \( x = 0 \) are equal to \( k \). ### Step 1: Calculate the Left-Hand Limit (LHL) as \( x \to 0^- \) For \( x < 0 \): \[ f(x) = \frac{\ln(2 - \cos(2x))}{\ln^2(1 + \sin(3x))} \] We need to find: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\ln(2 - \cos(2x))}{\ln^2(1 + \sin(3x))} \] As \( x \to 0 \), \( \cos(2x) \to 1 \) and \( \sin(3x) \to 0 \). Thus: \[ \ln(2 - \cos(2x)) \to \ln(2 - 1) = \ln(1) = 0 \] and \[ \ln(1 + \sin(3x)) \to \ln(1 + 0) = \ln(1) = 0 \] This gives us a \( \frac{0}{0} \) form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Using L'Hôpital's Rule: \[ \lim_{x \to 0^-} \frac{\ln(2 - \cos(2x))}{\ln^2(1 + \sin(3x))} = \lim_{x \to 0^-} \frac{\frac{d}{dx}[\ln(2 - \cos(2x))]}{\frac{d}{dx}[\ln^2(1 + \sin(3x))]} \] Calculating the derivatives: 1. **Numerator**: \[ \frac{d}{dx}[\ln(2 - \cos(2x))] = \frac{1}{2 - \cos(2x)} \cdot (2\sin(2x)) = \frac{2\sin(2x)}{2 - \cos(2x)} \] 2. **Denominator**: Using the chain rule: \[ \frac{d}{dx}[\ln^2(1 + \sin(3x))] = 2\ln(1 + \sin(3x)) \cdot \frac{3\cos(3x)}{1 + \sin(3x)} \] ### Step 3: Evaluate the Limit Again Now we evaluate: \[ \lim_{x \to 0^-} \frac{\frac{2\sin(2x)}{2 - \cos(2x)}}{2\ln(1 + \sin(3x)) \cdot \frac{3\cos(3x)}{1 + \sin(3x)}} \] As \( x \to 0 \): - \( \sin(2x) \to 2x \) - \( \cos(2x) \to 1 \) - \( \ln(1 + \sin(3x)) \to 3x \) Thus, the limit simplifies to: \[ \lim_{x \to 0^-} \frac{\frac{2(2x)}{2 - 1}}{2(3x) \cdot \frac{3}{1}} = \lim_{x \to 0^-} \frac{4x}{6x} = \frac{4}{6} = \frac{2}{3} \] ### Step 4: Calculate the Right-Hand Limit (RHL) as \( x \to 0^+ \) For \( x > 0 \): \[ f(x) = \frac{e^{\sin(2x)} - 1}{\ln(1 + \tan(9x))} \] We need to find: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{\sin(2x)} - 1}{\ln(1 + \tan(9x))} \] As \( x \to 0 \): - \( e^{\sin(2x)} - 1 \to \sin(2x) \to 2x \) - \( \tan(9x) \to 9x \) Thus: \[ \ln(1 + \tan(9x)) \to \ln(1 + 9x) \approx 9x \] This gives us another \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again: ### Step 5: Apply L'Hôpital's Rule Again Calculating the derivatives: 1. **Numerator**: \[ \frac{d}{dx}[e^{\sin(2x)} - 1] = e^{\sin(2x)} \cdot 2\cos(2x) \] 2. **Denominator**: \[ \frac{d}{dx}[\ln(1 + \tan(9x))] = \frac{9\sec^2(9x)}{1 + \tan(9x)} \] Now we evaluate: \[ \lim_{x \to 0^+} \frac{2e^{\sin(2x)}\cos(2x)}{\frac{9\sec^2(9x)}{1 + \tan(9x)}} \] As \( x \to 0 \): \[ = \frac{2 \cdot 1 \cdot 1}{9} = \frac{2}{9} \] ### Step 6: Set Limits Equal for Continuity For \( f(x) \) to be continuous at \( x = 0 \): \[ \text{LHL} = \text{RHL} = k \] Thus: \[ \frac{2}{3} = k \quad \text{and} \quad \frac{2}{9} = k \] Since we need \( k \) to be equal for both limits, we find that: \[ k = \frac{2}{9} \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{\frac{2}{9}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln (ax ^(2)+ bx +c))/(x ^(2)),,, -1 le x lt 0),(1 ,,, x =0),((sin (e ^(x ^(2))-1))/(x ^(2)),,, 0 lt x le 1):} Then which of the following is/are corrent

The value of k + f(0) so that f (x)={{:((sin (4k-1)x)/(3x)"," , x lt 0),((tan (4k +1)x )/(5x)"," , 0 lt x lt (pi)/(2)), ( 1"," , x =0):} can bemade continous at x=0 is:

Let f(x) = {{:({1 + |sin x|}^(a//|sin x|)",",-pi//6 lt x lt 0),(b",",x = 0),(e^(tan 2x//tan 3x)",",0 lt x lt pi//6):} Determine a and b such that f(x) is continuous at x = 0

Number of points where f (x)= {{:(max(|x ^(2)- x-2|","x ^(2) -3x),,, x ge0),( max (ln (-x)"," e ^(x)),,, x lt 0):} is non-differentiable will be:

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0, is

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1), x!=0,and f(x)=k , x=0" is continuous at "x=0,"find " k

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find k, if possible, so that f (x)= [{:((ln (2- cos 2x))/(ln ^(2) (1...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |