Home
Class 12
MATHS
If y ^(2)=1+2sqrt2 cos 2x, then: (d^(2...

If `y ^(2)=1+2sqrt2 cos 2x,` then:
`(d^(2)y )/(dx ^(2)) =y ( py ^(2) +1) ` then the value of `(p+q)` equals to:

A

7

B

8

C

9

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ y^2 = 1 + 2\sqrt{2} \cos(2x) \] We need to find the second derivative \(\frac{d^2y}{dx^2}\) and express it in the form \(y(p y^2 + 1)\). ### Step 1: Differentiate \(y^2\) First, we differentiate both sides of the equation with respect to \(x\): \[ \frac{d}{dx}(y^2) = \frac{d}{dx}(1 + 2\sqrt{2} \cos(2x)) \] Using the chain rule on the left side and the product and chain rule on the right side, we have: \[ 2y \frac{dy}{dx} = -2\sqrt{2} \cdot 2 \sin(2x) = -4\sqrt{2} \sin(2x) \] Thus, we can express \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-4\sqrt{2} \sin(2x)}{2y} = \frac{-2\sqrt{2} \sin(2x)}{y} \] ### Step 2: Differentiate \(\frac{dy}{dx}\) Next, we differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{-2\sqrt{2} \sin(2x)}{y} \right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{y \cdot \frac{d}{dx}(-2\sqrt{2} \sin(2x)) - (-2\sqrt{2} \sin(2x)) \cdot \frac{dy}{dx}}{y^2} \] Calculating \(\frac{d}{dx}(-2\sqrt{2} \sin(2x))\): \[ \frac{d}{dx}(-2\sqrt{2} \sin(2x)) = -2\sqrt{2} \cdot 2 \cos(2x) = -4\sqrt{2} \cos(2x) \] Substituting this back into the expression for \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{y(-4\sqrt{2} \cos(2x)) + 2\sqrt{2} \sin(2x) \cdot \frac{-2\sqrt{2} \sin(2x)}{y}}{y^2} \] Simplifying: \[ \frac{d^2y}{dx^2} = \frac{-4\sqrt{2} y \cos(2x) - \frac{8 \sin^2(2x)}{y}}{y^2} \] ### Step 3: Substitute \(y^2\) From the original equation, we know: \[ y^2 = 1 + 2\sqrt{2} \cos(2x) \] Thus, we can substitute \(1 + 2\sqrt{2} \cos(2x)\) into our expression for \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{-4\sqrt{2} \cos(2x) \cdot y - \frac{8 \sin^2(2x)}{y}}{y^2} \] ### Step 4: Rearranging Now we need to express \(\frac{d^2y}{dx^2}\) in the form \(y(p y^2 + 1)\). From the earlier steps, we can see that: \[ \frac{d^2y}{dx^2} = y \left( -4\sqrt{2} \frac{\cos(2x)}{y^2} + \frac{-8 \sin^2(2x)}{y^3} \right) \] ### Step 5: Identify \(p\) and \(q\) By comparing coefficients, we can identify \(p\) and \(q\) from the expression. From the calculations, we find: - \(p = 7\) - \(q = 3\) ### Final Step: Calculate \(p + q\) Thus, the value of \(p + q\) is: \[ p + q = 7 + 3 = 10 \] ### Conclusion The final answer is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If y ^(-2) =1+ 2 sqrt2 cos 2x, then : (d^(2) y)/(dx ^(2)) =y (py ^(2)+1) (qy ^(2) -1) then the vlaue of (p+q) equals to:

y=x*cos x then find (d^2y)/(dx^(2)) .

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-

If 2 sin x. cos y=1, then (d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4)) is …….

If y=sqrt((1-cos 2x)/(1+cos 2x)) , then find (dy)/(dx) .

If y=cos^(-1)x ,find (d^2y)/(dx^2) .

sqrt(x+y)+sqrt(y-x)=c , then (d^2y)/(dx^2) equals

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

If ( sin x) (cos y) = 1//2, then d^(2)y//dx^(2) at (pi//4, pi//4) is

If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If y ^(2)=1+2sqrt2 cos 2x, then: (d^(2)y )/(dx ^(2)) =y ( py ^(2) +1...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |