Home
Class 12
MATHS
If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^...

If `y=(x+sqrt(1+x^2))^n` then `(1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)`

A

`n ^(2)y`

B

`y ^(-n^(2))`

C

`-y`

D

`2x ^(2)y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \((1+x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}\) given that \(y = (x + \sqrt{1+x^2})^n\). ### Step 1: Differentiate \(y\) with respect to \(x\) Given: \[ y = (x + \sqrt{1+x^2})^n \] Using the chain rule: \[ \frac{dy}{dx} = n (x + \sqrt{1+x^2})^{n-1} \left(1 + \frac{1}{2\sqrt{1+x^2}} \cdot 2x\right) \] This simplifies to: \[ \frac{dy}{dx} = n (x + \sqrt{1+x^2})^{n-1} \left(1 + \frac{x}{\sqrt{1+x^2}}\right) \] Now, simplifying the term inside the brackets: \[ 1 + \frac{x}{\sqrt{1+x^2}} = \frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2}} = \frac{(x + \sqrt{1+x^2})}{\sqrt{1+x^2}} \] Thus, we have: \[ \frac{dy}{dx} = n (x + \sqrt{1+x^2})^{n-1} \cdot \frac{(x + \sqrt{1+x^2})}{\sqrt{1+x^2}} = n \frac{(x + \sqrt{1+x^2})^n}{\sqrt{1+x^2}} \] ### Step 2: Square both sides and differentiate again Now, squaring both sides: \[ (1+x^2) \left(\frac{dy}{dx}\right)^2 = n^2 (x + \sqrt{1+x^2})^{2n} \] ### Step 3: Differentiate again using the product rule Using the product rule: \[ \frac{d}{dx}\left((1+x^2) \left(\frac{dy}{dx}\right)^2\right) = \frac{d}{dx}(n^2 (x + \sqrt{1+x^2})^{2n}) \] Applying the product rule on the left-hand side: \[ \frac{d}{dx}(1+x^2) \cdot \left(\frac{dy}{dx}\right)^2 + (1+x^2) \cdot 2\frac{dy}{dx}\frac{d^2y}{dx^2} \] This becomes: \[ 2x \left(\frac{dy}{dx}\right)^2 + (1+x^2) \cdot 2\frac{dy}{dx}\frac{d^2y}{dx^2} \] ### Step 4: Differentiate the right-hand side For the right-hand side: \[ \frac{d}{dx}(n^2 (x + \sqrt{1+x^2})^{2n}) = n^2 \cdot 2n (x + \sqrt{1+x^2})^{2n-1} \cdot \left(1 + \frac{x}{\sqrt{1+x^2}}\right) \] ### Step 5: Set the equations equal Equating both sides: \[ 2x \left(\frac{dy}{dx}\right)^2 + (1+x^2) \cdot 2\frac{dy}{dx}\frac{d^2y}{dx^2} = n^2 \cdot 2n (x + \sqrt{1+x^2})^{2n-1} \cdot \left(1 + \frac{x}{\sqrt{1+x^2}}\right) \] ### Step 6: Solve for \((1+x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}\) Rearranging gives: \[ (1+x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = n^2 (x + \sqrt{1+x^2})^n \] Thus, we find: \[ (1+x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = n^2 y \] ### Final Answer \[ (1+x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = n^2 y \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If y=(x+sqrt(1+x^2))^n , then show that (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=n^2y

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

If y=(sin^(-1)x)/(sqrt(1-x^2)) , show that (1-x^2)(d^2y)/(dx^2)-3x(dy)/(dx)-y=0 .

If y={log(x+sqrt(x^2+1))}^2 , show that (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=2 .

If y=(sin^(-1)\ x)/(sqrt(1-x^2)) , show that (1-x^2) (d^2\ y)/(dx^2)-\ 3x\ (dy)/(dx)-\ y=0

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y={"log"(x+sqrt(x^2+1))}^2,"show that"(1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=2.

If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=[x+sqrt(x^2-1)]^(15)+[x-sqrt(x^2-1)]^(15) then prove that (x^2-1)(d^2y)/(dx^2)+x(dy)/(dx)-225y=0

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |