Home
Class 12
MATHS
Let g (x )=f ( x- sqrt( 1-x ^(2))) and f...

Let `g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) ` then `g'(x)` equal to:

A

`1-x ^(2)`

B

`sqrt(1-x ^(2))`

C

`2x (x+ sqrt(1-x ^(2)))`

D

`2x (x- sqrt(1- x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( g'(x) \) where \( g(x) = f(x - \sqrt{1 - x^2}) \) and \( f'(x) = 1 - x^2 \), we will use the chain rule for differentiation. Here’s the step-by-step solution: ### Step 1: Identify the function and its derivative We have: - \( g(x) = f(x - \sqrt{1 - x^2}) \) - \( f'(x) = 1 - x^2 \) ### Step 2: Differentiate \( g(x) \) using the chain rule Using the chain rule, we differentiate \( g(x) \): \[ g'(x) = f'(u) \cdot \frac{du}{dx} \] where \( u = x - \sqrt{1 - x^2} \). ### Step 3: Calculate \( \frac{du}{dx} \) Now, we need to find \( \frac{du}{dx} \): \[ u = x - \sqrt{1 - x^2} \] Differentiating \( u \): \[ \frac{du}{dx} = 1 - \frac{d}{dx}(\sqrt{1 - x^2}) \] Using the chain rule for \( \sqrt{1 - x^2} \): \[ \frac{d}{dx}(\sqrt{1 - x^2}) = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = -\frac{x}{\sqrt{1 - x^2}} \] Thus, \[ \frac{du}{dx} = 1 + \frac{x}{\sqrt{1 - x^2}} \] ### Step 4: Substitute back into \( g'(x) \) Now, substituting \( u \) and \( \frac{du}{dx} \) back into the expression for \( g'(x) \): \[ g'(x) = f'(u) \cdot \left( 1 + \frac{x}{\sqrt{1 - x^2}} \right) \] Substituting \( u = x - \sqrt{1 - x^2} \): \[ g'(x) = f'(x - \sqrt{1 - x^2}) \cdot \left( 1 + \frac{x}{\sqrt{1 - x^2}} \right) \] ### Step 5: Substitute \( f'(u) \) Now, we need to evaluate \( f'(u) \): \[ f'(u) = 1 - (x - \sqrt{1 - x^2})^2 \] Calculating \( (x - \sqrt{1 - x^2})^2 \): \[ (x - \sqrt{1 - x^2})^2 = x^2 - 2x\sqrt{1 - x^2} + (1 - x^2) = 1 - 2x\sqrt{1 - x^2} \] Thus, \[ f'(u) = 1 - (1 - 2x\sqrt{1 - x^2}) = 2x\sqrt{1 - x^2} \] ### Step 6: Final expression for \( g'(x) \) Now substituting \( f'(u) \) into the equation for \( g'(x) \): \[ g'(x) = 2x\sqrt{1 - x^2} \cdot \left( 1 + \frac{x}{\sqrt{1 - x^2}} \right) \] Distributing: \[ g'(x) = 2x\sqrt{1 - x^2} + 2x^2 \] ### Final Result Thus, the derivative \( g'(x) \) is: \[ g'(x) = 2x\sqrt{1 - x^2} + 2x^2 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

f(x)=1/abs(x), g(x)=sqrt(x^(-2))

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x)=e^(x) and g(x)=f(x)+f^(-1) , what does g(2) equal?

Suppose f and g are two functions such that f,g: R -> R f(x)=ln(1+sqrt(1+x^2)) and g(x)=ln(x+sqrt(1+x^2)) then find the value of xe^(g(x))f(1/x)+g'(x) at x=1

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is:

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) e...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |