Home
Class 12
MATHS
If tan x cot y= sec alpha where alpha is...

If tan x cot `y= sec alpha` where `alpha` is constant and `alpha in (-(pi)/(2), (pi)/(2))then (d ^(2)y)/(dx ^(2))at ((pi)/(4), (pi)/(4))` equal to:

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative \( \frac{d^2y}{dx^2} \) at the point \( \left( \frac{\pi}{4}, \frac{\pi}{4} \right) \) given the equation \( \tan x \cot y = \sec \alpha \). ### Step 1: Rewrite the equation Starting with the equation: \[ \tan x \cot y = \sec \alpha \] We can express \( \cot y \) as \( \frac{1}{\tan y} \): \[ \tan x \cdot \frac{1}{\tan y} = \sec \alpha \] This simplifies to: \[ \tan x = \sec \alpha \cdot \tan y \] ### Step 2: Differentiate both sides with respect to \( x \) Differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(\tan x) = \frac{d}{dx}(\sec \alpha \tan y) \] Using the derivative of \( \tan x \) which is \( \sec^2 x \): \[ \sec^2 x = \sec \alpha \cdot \sec^2 y \cdot \frac{dy}{dx} \] ### Step 3: Solve for \( \frac{dy}{dx} \) Rearranging gives: \[ \frac{dy}{dx} = \frac{\sec^2 x}{\sec \alpha \cdot \sec^2 y} \] ### Step 4: Evaluate \( \frac{dy}{dx} \) at \( \left( \frac{\pi}{4}, \frac{\pi}{4} \right) \) At \( x = \frac{\pi}{4} \): \[ \sec^2\left(\frac{\pi}{4}\right) = 2 \] Thus: \[ \frac{dy}{dx} = \frac{2}{\sec \alpha \cdot 2} = \frac{1}{\sec \alpha} \] Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we have: \[ \sec \alpha = \tan x \cdot \tan y = 1 \cdot 1 = 1 \] Therefore: \[ \frac{dy}{dx} = 1 \] ### Step 5: Differentiate again to find \( \frac{d^2y}{dx^2} \) Differentiating \( \sec^2 x = \sec \alpha \cdot \sec^2 y \cdot \frac{dy}{dx} \) again: Using the product rule: \[ \frac{d}{dx}(\sec^2 x) = 2 \sec^2 x \tan x \] And applying the product rule on the right-hand side: \[ 2 \sec^2 x \tan x = \sec \alpha \left( \sec^2 y \cdot \frac{d^2y}{dx^2} + \sec^2 y \cdot \frac{dy}{dx} \cdot 2 \sec y \tan y \right) \] ### Step 6: Substitute known values at \( \left( \frac{\pi}{4}, \frac{\pi}{4} \right) \) Substituting \( x = \frac{\pi}{4} \): \[ 2 \cdot 2 \cdot 1 = 1 \left( 2 \cdot \frac{d^2y}{dx^2} + 1 \cdot 2 \cdot 1 \cdot 1 \right) \] This simplifies to: \[ 4 = 2 \frac{d^2y}{dx^2} + 2 \] Rearranging gives: \[ 2 \frac{d^2y}{dx^2} = 2 \implies \frac{d^2y}{dx^2} = 1 \] ### Final Answer Thus, the value of \( \frac{d^2y}{dx^2} \) at \( \left( \frac{\pi}{4}, \frac{\pi}{4} \right) \) is: \[ \frac{d^2y}{dx^2} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If 2 sin x. cos y=1, then (d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4)) is …….

If ( sin x) (cos y) = 1//2, then d^(2)y//dx^(2) at (pi//4, pi//4) is

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

The expression (sin alpha+cos alpha)/(cos alpha-sin alpha) tan((pi)/(4)+alpha)+1, alpha in (-(pi)/(4), (pi)/(4)) simplifies to :

If 0 lt alpha lt (pi)/(3) , then prove that alpha (sec alpha) lt (2pi)/(3).

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If cot alpha=1/2, alpha in (pi,(3pi)/2) and sec beta=(-5)/3, beta in ((pi)/2, pi) find tan (alpha+beta)

If f(x) is a non - negative function such that the area bounded by y=f(x), x - axis and the lines x = 0 and x=alpha is 4alpha sin alpha+2 sq. Units ( AA alpha in [0, pi] ), then the value of f((pi)/(2)) is equal to

"If "y=sqrt((2(tanalpha+cotalpha))/(1+tan^(2)alpha)+(1)/(sin^(2)alpha))"when "alpha in ((3pi)/(4),pi)"then find "(dy)/(dalpha)" at" alpha=(5pi)/(6)

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If tan x cot y= sec alpha where alpha is constant and alpha in (-(pi)/...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |