Home
Class 12
MATHS
If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^...

If `f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cosx +5 and g (x) =f ^(-1) (x),` then the value of `g'(6)` equals:

A

1

B

`1/2`

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( g'(6) \) where \( g(x) = f^{-1}(x) \) and \( f(x) = 3x^9 - 2x^4 + 2x^3 - 3x^2 + x + \cos x + 5 \), we can follow these steps: ### Step 1: Understand the relationship between \( g \) and \( f \) Since \( g(x) = f^{-1}(x) \), we have: \[ f(g(x)) = x \] Differentiating both sides with respect to \( x \) gives: \[ f'(g(x)) \cdot g'(x) = 1 \] Thus, we can express \( g'(x) \) as: \[ g'(x) = \frac{1}{f'(g(x))} \] ### Step 2: Find \( g(6) \) We need to find \( g(6) \), which means we need to find \( f^{-1}(6) \). This requires solving for \( x \) in the equation \( f(x) = 6 \). ### Step 3: Solve \( f(x) = 6 \) We set up the equation: \[ 3x^9 - 2x^4 + 2x^3 - 3x^2 + x + \cos x + 5 = 6 \] This simplifies to: \[ 3x^9 - 2x^4 + 2x^3 - 3x^2 + x + \cos x - 1 = 0 \] Testing \( x = 0 \): \[ f(0) = 3(0)^9 - 2(0)^4 + 2(0)^3 - 3(0)^2 + 0 + \cos(0) + 5 = 0 + 1 + 5 = 6 \] Thus, \( g(6) = 0 \). ### Step 4: Find \( g'(6) \) Now we substitute \( g(6) = 0 \) into the expression for \( g'(x) \): \[ g'(6) = \frac{1}{f'(g(6))} = \frac{1}{f'(0)} \] ### Step 5: Calculate \( f'(x) \) Now we need to differentiate \( f(x) \): \[ f'(x) = 27x^8 - 8x^3 + 6x^2 - 6x + 1 - \sin x \] ### Step 6: Evaluate \( f'(0) \) Substituting \( x = 0 \): \[ f'(0) = 27(0)^8 - 8(0)^3 + 6(0)^2 - 6(0) + 1 - \sin(0) = 0 + 0 + 0 + 0 + 1 - 0 = 1 \] ### Step 7: Final Calculation of \( g'(6) \) Now substituting back into our expression for \( g'(6) \): \[ g'(6) = \frac{1}{f'(0)} = \frac{1}{1} = 1 \] ### Conclusion Thus, the value of \( g'(6) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

If f(x) = x^(2) + x + 5 and g(x) = sqrt(x) , then what is the value of (g(4))/(f(1)) ?

Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x) be inverse then the vlaue of g' (-4):

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

Given that f(x) = 3x + 7 and g(x) = (x^2)/(2) , what is the value of f(g(4)) ?

If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cosx +5 and g (x) =f ^...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |