Home
Class 12
MATHS
Let f (x)= [{:(x+1,,, x lt0),((x-1),,, x...

Let `f (x)= [{:(x+1,,, x lt0),((x-1),,, x ge0):}and g (x)=[{:(x+1,,, x lt 0),((x-1)^(2),,, x ge0):}` then the number of points where `g (f(x))` is not differentiable.

A

0

B

1

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the points where the function \( g(f(x)) \) is not differentiable. We start by analyzing the functions \( f(x) \) and \( g(x) \). ### Step 1: Define the functions The functions are defined as follows: \[ f(x) = \begin{cases} x + 1 & \text{if } x < 0 \\ x - 1 & \text{if } x \geq 0 \end{cases} \] \[ g(x) = \begin{cases} x + 1 & \text{if } x < 0 \\ (x - 1)^2 & \text{if } x \geq 0 \end{cases} \] ### Step 2: Determine the range of \( f(x) \) 1. For \( x < 0 \): - \( f(x) = x + 1 \) which approaches 1 as \( x \) approaches 0 from the left. 2. For \( x \geq 0 \): - \( f(x) = x - 1 \) which is 0 at \( x = 1 \) and increases thereafter. Thus, the range of \( f(x) \) is \( (-\infty, 1) \) for \( x < 0 \) and \( [0, \infty) \) for \( x \geq 0 \). ### Step 3: Find \( g(f(x)) \) Now we need to find \( g(f(x)) \) for different intervals of \( x \): 1. **For \( x < -1 \)**: - Here, \( f(x) = x + 1 < 0 \). - Thus, \( g(f(x)) = g(x + 1) = (x + 1) + 1 = x + 2 \). 2. **For \( -1 \leq x < 0 \)**: - Here, \( f(x) = x + 1 \) which is between 0 and 1. - Thus, \( g(f(x)) = g(x + 1) = (x + 1 - 1)^2 = x^2 \). 3. **For \( 0 \leq x < 1 \)**: - Here, \( f(x) = x - 1 < 0 \). - Thus, \( g(f(x)) = g(x - 1) = (x - 1) + 1 = x \). 4. **For \( x \geq 1 \)**: - Here, \( f(x) = x - 1 \geq 0 \). - Thus, \( g(f(x)) = g(x - 1) = (x - 1)^2 \). ### Step 4: Combine the results Now we can summarize \( g(f(x)) \): \[ g(f(x)) = \begin{cases} x + 2 & \text{if } x < -1 \\ x^2 & \text{if } -1 \leq x < 0 \\ x & \text{if } 0 \leq x < 1 \\ (x - 1)^2 & \text{if } x \geq 1 \end{cases} \] ### Step 5: Identify points of non-differentiability To find points where \( g(f(x)) \) is not differentiable, we check the points where the definition of \( g(f(x)) \) changes: 1. At \( x = -1 \): - Left limit: \( g(f(-1)) = (-1)^2 = 1 \) - Right limit: \( g(f(-1)) = -1 + 2 = 1 \) - The derivatives from both sides are different. 2. At \( x = 0 \): - Left limit: \( g(f(0^-)) = 0^2 = 0 \) - Right limit: \( g(f(0^+)) = 0 \) - The derivatives from both sides are different. 3. At \( x = 1 \): - Left limit: \( g(f(1^-)) = 1 \) - Right limit: \( g(f(1^+)) = (1 - 1)^2 = 0 \) - The derivatives from both sides are different. ### Conclusion Thus, \( g(f(x)) \) is not differentiable at three points: \( x = -1, 0, 1 \). The final answer is that there are **3 points** where \( g(f(x)) \) is not differentiable. ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where g (x) =f (|x|) is non-differentiable.

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If f (x)= [{:( cos x ^(2),, x lt 0),( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where f (x) =f )|x|) is non-difierentiable.

f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):} and g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):} . Then find g(f(x)).

If f(x)={{:(-1, x lt 0),(0, x=0 and g(x)=x(1-x^(2))", then"),(1, x gt 0):}

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If a=2 and b=3, then the range of g(f(x)) is

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|, where [.] represents the greatest integer function . the number of point where g(x) is non - differentiable is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x)= [{:(x+1,,, x lt0),((x-1),,, x ge0):}and g (x)=[{:(x+1,,, x ...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |