Home
Class 12
MATHS
f(x)=[sinx]+[cosx] ,x epsilon [0,2pi], w...


f(x)=[sinx]+[cosx] ,`x epsilon [0,2pi]`, where[.] denotes the greatest integer function. Total number of point where f (x) is non-differentiable is equal to
i) 2
ii) 3
iii) 4
iv) 5

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = [\sin x] + [\cos x] \) over the interval \( x \in [0, 2\pi] \), where \([.]\) denotes the greatest integer function. ### Step 1: Determine the values of \([\sin x]\) over the interval \([0, 2\pi]\) 1. **For \( x \in [0, \frac{\pi}{2}) \)**: - \( \sin x \) varies from 0 to 1. - Therefore, \([\sin x] = 0\). 2. **At \( x = \frac{\pi}{2} \)**: - \( \sin(\frac{\pi}{2}) = 1 \). - Therefore, \([\sin(\frac{\pi}{2})] = 1\). 3. **For \( x \in (\frac{\pi}{2}, \pi) \)**: - \( \sin x \) decreases from 1 to 0. - Therefore, \([\sin x] = 0\). 4. **For \( x \in [\pi, \frac{3\pi}{2}) \)**: - \( \sin x \) varies from 0 to -1. - Therefore, \([\sin x] = -1\). 5. **For \( x = \frac{3\pi}{2} \)**: - \( \sin(\frac{3\pi}{2}) = -1 \). - Therefore, \([\sin(\frac{3\pi}{2})] = -1\). 6. **For \( x \in (\frac{3\pi}{2}, 2\pi) \)**: - \( \sin x \) increases from -1 to 0. - Therefore, \([\sin x] = -1\). 7. **At \( x = 2\pi \)**: - \( \sin(2\pi) = 0 \). - Therefore, \([\sin(2\pi)] = 0\). ### Step 2: Determine the values of \([\cos x]\) over the interval \([0, 2\pi]\) 1. **At \( x = 0 \)**: - \( \cos(0) = 1 \). - Therefore, \([\cos(0)] = 1\). 2. **For \( x \in (0, \frac{\pi}{2}) \)**: - \( \cos x \) decreases from 1 to 0. - Therefore, \([\cos x] = 0\). 3. **At \( x = \frac{\pi}{2} \)**: - \( \cos(\frac{\pi}{2}) = 0 \). - Therefore, \([\cos(\frac{\pi}{2})] = 0\). 4. **For \( x \in (\frac{\pi}{2}, \frac{3\pi}{2}) \)**: - \( \cos x \) decreases from 0 to -1. - Therefore, \([\cos x] = -1\). 5. **At \( x = \frac{3\pi}{2} \)**: - \( \cos(\frac{3\pi}{2}) = 0 \). - Therefore, \([\cos(\frac{3\pi}{2})] = 0\). 6. **For \( x \in (\frac{3\pi}{2}, 2\pi) \)**: - \( \cos x \) increases from -1 to 1. - Therefore, \([\cos x] = -1\). 7. **At \( x = 2\pi \)**: - \( \cos(2\pi) = 1 \). - Therefore, \([\cos(2\pi)] = 1\). ### Step 3: Calculate \( f(x) = [\sin x] + [\cos x] \) Now, we can combine the values of \([\sin x]\) and \([\cos x]\): - **At \( x = 0 \)**: \( f(0) = [\sin(0)] + [\cos(0)] = 0 + 1 = 1 \) - **For \( x \in (0, \frac{\pi}{2}) \)**: \( f(x) = 0 + 0 = 0 \) - **At \( x = \frac{\pi}{2} \)**: \( f(\frac{\pi}{2}) = 1 + 0 = 1 \) - **For \( x \in (\frac{\pi}{2}, \pi) \)**: \( f(x) = 0 - 1 = -1 \) - **At \( x = \pi \)**: \( f(\pi) = -1 - 1 = -2 \) - **For \( x \in (\pi, \frac{3\pi}{2}) \)**: \( f(x) = -1 - 1 = -2 \) - **At \( x = \frac{3\pi}{2} \)**: \( f(\frac{3\pi}{2}) = -1 + 0 = -1 \) - **For \( x \in (\frac{3\pi}{2}, 2\pi) \)**: \( f(x) = -1 + 0 = -1 \) - **At \( x = 2\pi \)**: \( f(2\pi) = 0 + 1 = 1 \) ### Step 4: Identify points of non-differentiability The function \( f(x) \) is non-differentiable at points where there are jumps or discontinuities in the function. The points where \( f(x) \) changes its value abruptly are: 1. \( x = 0 \) (from 1 to 0) 2. \( x = \frac{\pi}{2} \) (from 0 to 1) 3. \( x = \pi \) (from 1 to -2) 4. \( x = \frac{3\pi}{2} \) (from -2 to -1) 5. \( x = 2\pi \) (from -1 to 1) Thus, the total number of points where \( f(x) \) is non-differentiable is **5**. ### Final Answer The total number of points where \( f(x) \) is non-differentiable is **5** (Option iv). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

Range of f(x) =[1+sinx]+[cosx-1]+[tan^(- 1)x] AA x in [0,2pi] where [] denotes the greatest integer function is

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

Evaluate ("lim")_(x->(5pi)/4) [sinx+cosx], where [.] denotes the greatest integer function.

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. f(x)=[sinx]+[cosx] ,x epsilon [0,2pi], where[.] denotes the greatest ...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |