Home
Class 12
MATHS
Let f (x) =cos x, g (x)={{:(min {f (t):0...

Let `f (x) =cos x, g (x)={{:(min {f (t):0 le t le x}",", x in[0","pi]),((sin x)-1"," , x gtpi):}` Then

A

g (x) is discontinuous at `x =pi`

B

` g (x) ` is continous for `x in [0,oo)`

C

`g (x)` is differentiable at `x = pi`

D

`g (x)` is differentiable for `x in [0,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) as defined in the question. 1. **Define the functions**: - \( f(x) = \cos x \) - For \( g(x) \): \[ g(x) = \begin{cases} \min \{ f(t) : 0 \leq t \leq x \} & \text{if } x \in [0, \pi] \\ \sin x - 1 & \text{if } x > \pi \end{cases} \] 2. **Analyzing \( g(x) \) for \( x \in [0, \pi] \)**: - Since \( f(t) = \cos t \) is a decreasing function in the interval \([0, \pi]\), the minimum value of \( f(t) \) occurs at \( t = x \). - Therefore, for \( x \in [0, \pi] \): \[ g(x) = \cos x \] 3. **Analyzing \( g(x) \) for \( x > \pi \)**: - For \( x > \pi \): \[ g(x) = \sin x - 1 \] 4. **Finding continuity at \( x = \pi \)**: - We need to check if \( g(x) \) is continuous at \( x = \pi \): - \( g(\pi) = \cos(\pi) = -1 \) - \( \lim_{x \to \pi^-} g(x) = \lim_{x \to \pi^-} \cos x = -1 \) - \( \lim_{x \to \pi^+} g(x) = \lim_{x \to \pi^+} (\sin x - 1) = \sin(\pi) - 1 = -1 \) - Since both limits and the function value at \( x = \pi \) are equal, \( g(x) \) is continuous at \( x = \pi \). 5. **Finding differentiability at \( x = \pi \)**: - We need to check if \( g(x) \) is differentiable at \( x = \pi \): - For \( x < \pi \): \[ g'(x) = -\sin x \] - For \( x > \pi \): \[ g'(x) = \cos x \] - Evaluating at \( x = \pi \): - \( g'(\pi^-) = -\sin(\pi) = 0 \) - \( g'(\pi^+) = \cos(\pi) = -1 \) - Since the left-hand derivative and right-hand derivative at \( x = \pi \) are not equal, \( g(x) \) is not differentiable at \( x = \pi \). 6. **Conclusion**: - \( g(x) \) is continuous at \( x = \pi \) but not differentiable at \( x = \pi \). ### Final Answer: - The correct option is that \( g(x) \) is continuous at \( x = \pi \) but not differentiable at \( x = \pi \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = sin x and " g(x)" = {{:(max {f(t)","0 le x le pi},"for", 0 le x le pi),((1-cos x)/(2)",","for",x gt pi):} Then, g(x) is

If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le x},, 0 le x le1),(3-x,, 1 lt x le 2):} and if lamda=g ((1)/(4))+g ((3)/(4))+g ((5)/(4)), then 2 lamda=

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

Let |f (x)| le sin ^(2) x, AA x in R, then

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where {.} denotes greatest integer function then. Number of points where f (x) is non-derivable :

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x) =cos x, g (x)={{:(min {f (t):0 le t le x}",", x in[0","pi]),...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |