Home
Class 12
MATHS
Let f(x)= {{:((x)/(1+|x|)",", |x| ge1),...

Let `f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},` then domain of `f'(x)` is:

A

`(-oo,oo)`

B

`(-oo,oo)-{-1,0,1}`

C

`(-oo,oo)-{-1,1}`

D

`(-oo,oo) -{0}`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the domain of \( f'(x) \) for the given piecewise function \[ f(x) = \begin{cases} \frac{x}{1 + |x|} & \text{if } |x| \geq 1 \\ \frac{x}{1 - |x|} & \text{if } |x| < 1 \end{cases} \] we will follow these steps: ### Step 1: Define the function for different intervals We can rewrite the function \( f(x) \) based on the absolute value conditions: 1. For \( x \geq 1 \): \( f(x) = \frac{x}{1 + x} \) 2. For \( -1 < x < 1 \): \( f(x) = \frac{x}{1 - x} \) 3. For \( x \leq -1 \): \( f(x) = \frac{x}{1 - x} \) ### Step 2: Differentiate \( f(x) \) Now we will differentiate \( f(x) \) in each of these intervals. 1. For \( x \geq 1 \): \[ f'(x) = \frac{(1 + x) \cdot 1 - x \cdot 1}{(1 + x)^2} = \frac{1}{(1 + x)^2} \] 2. For \( -1 < x < 1 \): \[ f'(x) = \frac{(1 - x) \cdot 1 - x \cdot (-1)}{(1 - x)^2} = \frac{1}{(1 - x)^2} \] 3. For \( x \leq -1 \): \[ f'(x) = \frac{(1 - x) \cdot 1 - x \cdot (-1)}{(1 - x)^2} = \frac{1}{(1 - x)^2} \] ### Step 3: Check for continuity and differentiability at critical points We need to check the points where the definition of \( f(x) \) changes, which are \( x = -1 \), \( x = 0 \), and \( x = 1 \). - **At \( x = -1 \)**: - Left-hand derivative (LHD) as \( x \to -1^- \): \[ f'(-1) = \frac{1}{(1 - (-1))^2} = \frac{1}{4} \] - Right-hand derivative (RHD) as \( x \to -1^+ \): \[ f'(-1) = \frac{1}{(1 + (-1))^2} = \frac{1}{0} \text{ (undefined)} \] - Since LHD and RHD are not equal, \( f'(x) \) is not defined at \( x = -1 \). - **At \( x = 0 \)**: - LHD as \( x \to 0^- \): \[ f'(0) = \frac{1}{(1 - 0)^2} = 1 \] - RHD as \( x \to 0^+ \): \[ f'(0) = \frac{1}{(1 + 0)^2} = 1 \] - Since LHD and RHD are equal, \( f'(x) \) is defined at \( x = 0 \). - **At \( x = 1 \)**: - LHD as \( x \to 1^- \): \[ f'(1) = \frac{1}{(1 - 1)^2} = \frac{1}{0} \text{ (undefined)} \] - RHD as \( x \to 1^+ \): \[ f'(1) = \frac{1}{(1 + 1)^2} = \frac{1}{4} \] - Since LHD and RHD are not equal, \( f'(x) \) is not defined at \( x = 1 \). ### Step 4: Determine the domain of \( f'(x) \) From the analysis, we find that \( f'(x) \) is defined for: - \( (-\infty, -1) \) - \( (-1, 1) \) - \( (1, \infty) \) Thus, the domain of \( f'(x) \) is: \[ (-\infty, -1) \cup (-1, 1) \cup (1, \infty) \] ### Final Answer The domain of \( f'(x) \) is \( (-\infty, -1) \cup (-1, 1) \cup (1, \infty) \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(tan^(-1)x, , |x|ge1),((x^(2)-1)/4, , |x|lt1):} then domain of f'(x) is

f(x)= {{:(x + 1"," if x ge 1 ),(x^(2)+ 1"," if x lt 1):} Check continuity of f(x) at x = 1.

If f(x) =1- x, x in [-3,3] , then the domain of fof (x) is

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

{{:((x)/(|x|)","if x lt 0 ),(-1"," if x ge 0 ):} Check continuity of f(x) at x = 0

If f(x)=(sqrt(x-1))/(x) , what is the domain of f(x) ?

If f(x)=(1)/(sqrt(x)) , what is the domain of f(x)?

Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):} . Then , f(x) is

Consider a function g(x)=f(x-2),AA x in R , where f(x)={{:((1)/(|x|),":",|x|ge1),(ax^(2)+b,":",|x|lt1):} . If g(x) is continuous as well as differentiable for all x, then

Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |