Home
Class 12
MATHS
If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ...

If `f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)),` then `f '(0)` is equal to:

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(0) \) for the function \( f(x) = \sqrt{\frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)}} \), we will follow these steps: ### Step 1: Write down the function We start with the given function: \[ f(x) = \sqrt{\frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)}} \] ### Step 2: Differentiate the function using the chain rule and quotient rule To differentiate \( f(x) \), we apply the chain rule and the quotient rule. The derivative of \( f(x) \) is given by: \[ f'(x) = \frac{1}{2\sqrt{\frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)}}} \cdot \frac{d}{dx}\left(\frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)}\right) \] Using the quotient rule, we differentiate the inside function: \[ \frac{d}{dx}\left(\frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)}\right) = \frac{(1 - \tan^{-1}(x)) \cdot \frac{d}{dx}(\sin^{-1}(x)) - (1 + \sin^{-1}(x)) \cdot \frac{d}{dx}(\tan^{-1}(x))}{(1 - \tan^{-1}(x))^2} \] ### Step 3: Find the derivatives of \( \sin^{-1}(x) \) and \( \tan^{-1}(x) \) The derivatives are: \[ \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1 - x^2}} \] \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1 + x^2} \] ### Step 4: Substitute the derivatives back into the expression Substituting these derivatives back, we have: \[ f'(x) = \frac{1}{2\sqrt{\frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)}}} \cdot \frac{(1 - \tan^{-1}(x)) \cdot \frac{1}{\sqrt{1 - x^2}} - (1 + \sin^{-1}(x)) \cdot \frac{1}{1 + x^2}}{(1 - \tan^{-1}(x))^2} \] ### Step 5: Evaluate \( f'(0) \) Now we need to evaluate \( f'(0) \): - At \( x = 0 \): \[ \sin^{-1}(0) = 0 \quad \text{and} \quad \tan^{-1}(0) = 0 \] Thus, substituting \( x = 0 \): \[ f(0) = \sqrt{\frac{1 + 0}{1 - 0}} = \sqrt{1} = 1 \] Now substituting into the derivative: \[ f'(0) = \frac{1}{2\sqrt{1}} \cdot \frac{(1 - 0) \cdot 1 - (1 + 0) \cdot 1}{(1 - 0)^2} \] This simplifies to: \[ f'(0) = \frac{1}{2} \cdot \frac{1 - 1}{1^2} = \frac{1}{2} \cdot 0 = 0 \] ### Final Answer Thus, \( f'(0) = 1 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x)) , then f'(-(1)/(2)) is equal to

If f(x)=(log_(cotx)tanx)(log_(tanx)cotx)^(-1) +tan^(-1)((x)/(sqrt(4-x^(2)))) , then f'(0) is equal to

Consider a real - valued function f(x) = sqrt(sin^(-1) x + 2) + sqrt(1 - sin^(-1)x) The range of f (x) is

If f (x)=((x+1)^(7)sqrt(1+x ^(2)))/((x^(2) -x+1)^(6)), then the value of f'(0) is equal to:

If f(x) = sqrt((1)/(tan^(-1)(x^(2)-4x + 3))) , then f(x) is continuous for

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |