Home
Class 12
MATHS
If f (x)= [{:(e ^(x-1),,, 0 le x le 1),(...

If `f (x)= [{:(e ^(x-1),,, 0 le x le 1),( x+1-{x},', 1 lt x lt 3 ):}and g (x) =x ^(2) -ax +b` such that `f (x)g (x)` is continous `[0,3]` then the ordered pair (a,b) is (where {.} denotes fractional part function):

A

`(2,3)`

B

`(1,2)`

C

`(3,2)`

D

`(2,2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the product \( f(x)g(x) \) is continuous on the interval \([0, 3]\). Given the piecewise function \( f(x) \) and the quadratic function \( g(x) \), we will analyze the continuity at the points where \( f(x) \) changes its definition, specifically at \( x = 1 \) and \( x = 2 \). ### Step 1: Define the functions The function \( f(x) \) is defined as: - \( f(x) = e^{(x-1)} \) for \( 0 \leq x \leq 1 \) - \( f(x) = x + 1 - \{x\} \) for \( 1 < x < 3 \) The function \( g(x) \) is given by: \[ g(x) = x^2 - ax + b \] ### Step 2: Evaluate \( f(x) \) at the points of interest We need to evaluate \( f(x) \) at \( x = 1 \) and \( x = 2 \): - At \( x = 1 \): \[ f(1) = e^{(1-1)} = e^0 = 1 \] - At \( x = 2 \): \[ f(2) = 2 + 1 - \{2\} = 2 + 1 - 0 = 3 \] ### Step 3: Set up continuity conditions for \( g(x) \) For \( f(x)g(x) \) to be continuous at \( x = 1 \): \[ f(1)g(1) = 1 \cdot g(1) = g(1) \text{ must be continuous} \] Thus, we set: \[ g(1) = 1 - a + b = 0 \quad \text{(1)} \] For \( x = 2 \): \[ f(2)g(2) = 3 \cdot g(2) \text{ must be continuous} \] Thus, we set: \[ g(2) = 4 - 2a + b = 0 \quad \text{(2)} \] ### Step 4: Solve the system of equations From equation (1): \[ -b + a = 1 \quad \text{(1)} \] From equation (2): \[ -2a + b = -4 \quad \text{(2)} \] Now we can solve this system of equations. From (1), we can express \( b \) in terms of \( a \): \[ b = a - 1 \] Substituting \( b \) into equation (2): \[ -2a + (a - 1) = -4 \] \[ -2a + a - 1 = -4 \] \[ -a - 1 = -4 \] \[ -a = -3 \quad \Rightarrow \quad a = 3 \] Now substituting \( a = 3 \) back into equation (1) to find \( b \): \[ b = 3 - 1 = 2 \] ### Final Ordered Pair Thus, the ordered pair \( (a, b) \) is: \[ (a, b) = (3, 2) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

f(x)={{:(x-1",", -1 le xle 0),(x^(2)",",0 lt x le 1):} and g(x)=sinx. Find h(x)=f(abs(g(x)))+abs(f(g(x))).

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x)= [{:(e ^(x-1),,, 0 le x le 1),( x+1-{x},', 1 lt x lt 3 ):}and...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |