Home
Class 12
MATHS
Let f (x)= [{:((x(3e^(1//x)+4))/(2 -e^(1...

Let `f (x)= [{:((x(3e^(1//x)+4))/(2 -e^(1//x)),,,( x ne 0)),(0 ,,, x=0):} x ne (1)/(ln 2)` which of the following statement (s) is/are correct ?

A

f (x) is continous `at x=0`

B

` f (x)` is non-dervable at `x=0`

C

`f'(0^(+))=-3`

D

`f '(0^(-))` does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given: \[ f(x) = \begin{cases} \frac{x(3e^{1/x} + 4)}{2 - e^{1/x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] We need to check the continuity and differentiability of \( f(x) \) at \( x = 0 \). ### Step 1: Check Continuity at \( x = 0 \) To check continuity at \( x = 0 \), we need to find the left-hand limit and the right-hand limit as \( x \) approaches 0, and see if they equal \( f(0) \). #### Left-Hand Limit: \[ \lim_{h \to 0^-} f(h) = \lim_{h \to 0^-} \frac{h(3e^{1/h} + 4)}{2 - e^{1/h}} \] As \( h \to 0^- \), \( e^{1/h} \to 0 \). Thus, we have: \[ = \lim_{h \to 0^-} \frac{h(3 \cdot 0 + 4)}{2 - 0} = \lim_{h \to 0^-} \frac{4h}{2} = \lim_{h \to 0^-} 2h = 0 \] #### Right-Hand Limit: \[ \lim_{h \to 0^+} f(h) = \lim_{h \to 0^+} \frac{h(3e^{1/h} + 4)}{2 - e^{1/h}} \] As \( h \to 0^+ \), \( e^{1/h} \to \infty \). Thus, we have: \[ = \lim_{h \to 0^+} \frac{h(3 \cdot \infty + 4)}{2 - \infty} \approx \lim_{h \to 0^+} \frac{3h \cdot \infty}{-\infty} = 0 \] Both limits equal 0, which is \( f(0) \). Therefore, \( f(x) \) is continuous at \( x = 0 \). ### Step 2: Check Differentiability at \( x = 0 \) To check differentiability at \( x = 0 \), we need to find the left-hand derivative and the right-hand derivative. #### Left-Hand Derivative: \[ f'(0^-) = \lim_{h \to 0^-} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^-} \frac{\frac{h(3e^{1/h} + 4)}{2 - e^{1/h}} - 0}{h} \] This simplifies to: \[ = \lim_{h \to 0^-} \frac{3e^{1/h} + 4}{2 - e^{1/h}} = \frac{4}{2} = 2 \] #### Right-Hand Derivative: \[ f'(0^+) = \lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{\frac{h(3e^{1/h} + 4)}{2 - e^{1/h}} - 0}{h} \] This simplifies to: \[ = \lim_{h \to 0^+} \frac{3e^{1/h} + 4}{2 - e^{1/h}} = \lim_{h \to 0^+} \frac{3 \cdot \infty + 4}{2 - \infty} = -\infty \] ### Conclusion Since the left-hand derivative \( f'(0^-) = 2 \) and the right-hand derivative \( f'(0^+) = -\infty \) are not equal, \( f(x) \) is not differentiable at \( x = 0 \). ### Final Answer - The function \( f(x) \) is continuous at \( x = 0 \). - The function \( f(x) \) is not differentiable at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

If f (x)= {{:((x-e ^(x)+1-(1-cos 2x))/(x ^(2)), x ne 0),(k,x=0):} is continous at x=0 then which of the following statement is false ?

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

Let lim _(xtooo) (2 ^(x) +a ^(x) +e ^(x))^(1//x)=L which of the following statement (s) is (are) correct ?

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If (f(x)-1) (x ^(2) + x+1)^(2) -(f (x)+1) (x^(4) +x ^(2) +1) =0 AA x in R -{0}and f (x) ne pm 1, then which of the following statement (s) is/are correct ?

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. If f (x)= tan ^(-1) (sgn (n ^(2) -lamda x+1)) has exactly one point of...

    Text Solution

    |

  2. f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x...

    Text Solution

    |

  3. Let f (x)= [{:((x(3e^(1//x)+4))/(2 -e^(1//x)),,,( x ne 0)),(0 ,,, x=0)...

    Text Solution

    |

  4. Let |f (x)| le sin ^(2) x, AA x in R, then

    Text Solution

    |

  5. Let f (x)=[{:((a (1-x sin x)+ b cos x +5)/(x ^(2)),,, x lt 0), ((1+ ((...

    Text Solution

    |

  6. If f (x)=|||x|-2|+p| have more than 3 points non-derivability then the...

    Text Solution

    |

  7. Identify the options having correct statement:

    Text Solution

    |

  8. A twice differentiable function f(x)is defined for all real numbers an...

    Text Solution

    |

  9. If f(x) = |sinx|, then

    Text Solution

    |

  10. Let [.] represent the greatest integer function and f (x)=[tan^2 x] th...

    Text Solution

    |

  11. Let f be a differentiable function satisfying f'(x)=f' (-x) AA x in R....

    Text Solution

    |

  12. Let f :R to R be a function, such that |f(x)|le x ^(4n), n in N AA n i...

    Text Solution

    |

  13. Let f (x) =[x] and g (x) =0 when x is an integer and g (x) =x ^(2) whe...

    Text Solution

    |

  14. let the function f be defined by f (x)= {{:(p+ qx+ x^(2)"," , x lt 2),...

    Text Solution

    |

  15. Let f (x) =|2x-9|+|2x+9|. Which of the following are true ?

    Text Solution

    |

  16. Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

    Text Solution

    |

  17. Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA, x...

    Text Solution

    |

  18. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  19. Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} t...

    Text Solution

    |

  20. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |