Home
Class 12
MATHS
Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2)...

Let `f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma` satisfy `alpha lt beta gamma` are the roots of `f '(x)=0` then which of the following is/are correct ([.] denots greatest integer function) ?

A

`[alpha]=-2`

B

`[beta]=-1`

C

`[beta]=0`

D

`[alpha]=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the roots of the derivative of the function \( f(x) = (x^2 - 3x + 2)(x^2 + 3x + 2) \) and then determine the greatest integer function values for those roots. ### Step 1: Differentiate \( f(x) \) Using the product rule, we differentiate \( f(x) \): \[ f'(x) = (x^2 - 3x + 2)'(x^2 + 3x + 2) + (x^2 - 3x + 2)(x^2 + 3x + 2)' \] Calculating the derivatives: 1. \( (x^2 - 3x + 2)' = 2x - 3 \) 2. \( (x^2 + 3x + 2)' = 2x + 3 \) Substituting these into the product rule gives: \[ f'(x) = (2x - 3)(x^2 + 3x + 2) + (x^2 - 3x + 2)(2x + 3) \] ### Step 2: Expand \( f'(x) \) Now, we will expand both terms: 1. Expanding \( (2x - 3)(x^2 + 3x + 2) \): \[ = 2x^3 + 6x^2 + 4x - 3x^2 - 9x - 6 = 2x^3 + 3x^2 - 5x - 6 \] 2. Expanding \( (x^2 - 3x + 2)(2x + 3) \): \[ = 2x^3 + 3x^2 - 6x - 9 + 2 = 2x^3 + 3x^2 - 6x - 9 \] Combining both expansions: \[ f'(x) = (2x^3 + 3x^2 - 5x - 6) + (2x^3 + 3x^2 - 6x - 9) \] This simplifies to: \[ f'(x) = 4x^3 - 10x \] ### Step 3: Set \( f'(x) = 0 \) Setting the derivative equal to zero: \[ 4x^3 - 10x = 0 \] Factoring out \( 2x \): \[ 2x(2x^2 - 5) = 0 \] This gives us: \[ x = 0 \quad \text{or} \quad 2x^2 - 5 = 0 \] Solving \( 2x^2 - 5 = 0 \): \[ 2x^2 = 5 \quad \Rightarrow \quad x^2 = \frac{5}{2} \quad \Rightarrow \quad x = \pm \sqrt{\frac{5}{2}} = \pm \frac{\sqrt{10}}{2} \] ### Step 4: Identify the roots Thus, the roots of \( f'(x) = 0 \) are: \[ \alpha = -\frac{\sqrt{10}}{2}, \quad \beta = 0, \quad \gamma = \frac{\sqrt{10}}{2} \] ### Step 5: Calculate the greatest integer function values 1. **For \( \alpha \)**: - \( \alpha \approx -1.5811 \) - \( \lfloor \alpha \rfloor = -2 \) 2. **For \( \beta \)**: - \( \beta = 0 \) - \( \lfloor \beta \rfloor = 0 \) 3. **For \( \gamma \)**: - \( \gamma \approx 1.5811 \) - \( \lfloor \gamma \rfloor = 1 \) ### Conclusion The greatest integer function values are: - \( \lfloor \alpha \rfloor = -2 \) - \( \lfloor \beta \rfloor = 0 \) - \( \lfloor \gamma \rfloor = 1 \) ### Final Answer - Option A: \( \lfloor \alpha \rfloor = -2 \) (Correct) - Option B: \( \lfloor \beta \rfloor = 0 \) (Correct) - Option C: \( \lfloor \gamma \rfloor = 1 \) (Correct)
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha ,beta and gamma are the roots of x^3-2x^2+3x-4 =0 , then find sumalpha^2beta^2

if alpha is a real root of 2x^3-3x^2 + 6x + 6 = 0, then find [alpha ] where [] denotes the greatest integer function.

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha , beta , gamma are the roots of x^3 -7x + 6 =0 the equation whose roots are alpha + beta , beta + gamma , gamma + alpha is

If alpha,beta,gamma are the roots of 4x^3-6x^2+7x+3=0 then find the value of alpha beta +beta gamma+gamma alpha .

If alpha, beta, gamma are the roots of x^(3) + 2x^(2) - 4x - 3 = 0 then the equation whose roots are alpha//3, beta//3, gamma//3 is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

    Text Solution

    |

  2. Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA, x...

    Text Solution

    |

  3. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  4. Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} t...

    Text Solution

    |

  5. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  6. Let f(x)=x +(1-x) x ^(2) +[1- x) (1- x^(2)) +…..+ (1-x) …….(1-x ^(n-1)...

    Text Solution

    |

  7. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  8. If f(x) = {{:((sin[x^(2)]pi)/(x^(2)-3x - 18)+ax^(2)+b",","for",0 le x ...

    Text Solution

    |

  9. Let f (x) [ {:(1+x"," , 0 le x le 2),( 3-x"," ,2 lt x le 3):}: g(x...

    Text Solution

    |

  10. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  11. Let f(x)={{:(,|x|-3,x lt 1),(,|x-2|+a,x ge 1):} g(x)={{:(,2-|x|,x lt...

    Text Solution

    |

  12. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  13. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  14. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  15. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  16. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  17. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  18. If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  19. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  20. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |