Home
Class 12
MATHS
Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2...

Let `f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:(3x+b,0 le x lt 1),(x ^(3), 1 le x le 2):}`
If derivative of `f(x)` w.r.t. `g (x ) at x =1` exists and is equal to `lamda,` then which of the followig is/are correct?

A

`a+b=-3`

B

`a-b=1`

C

`(ab)/(lamda)=3`

D

`(-b)/(lamda)=3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) and ensure they are continuous and differentiable at the point \( x = 1 \). Then, we will compute the derivative of \( f(x) \) with respect to \( g(x) \) at \( x = 1 \) and find the values of \( a \) and \( b \). ### Step-by-Step Solution: 1. **Define the Functions**: \[ f(x) = \begin{cases} x^2 + a & \text{for } 0 \leq x < 1 \\ 2x + b & \text{for } 1 \leq x \leq 2 \end{cases} \] \[ g(x) = \begin{cases} 3x + b & \text{for } 0 \leq x < 1 \\ x^3 & \text{for } 1 \leq x \leq 2 \end{cases} \] 2. **Check Continuity at \( x = 1 \) for \( f(x) \)**: - Left-hand limit as \( x \to 1^- \): \[ f(1^-) = 1^2 + a = 1 + a \] - Right-hand limit as \( x \to 1^+ \): \[ f(1^+) = 2(1) + b = 2 + b \] - Set the limits equal for continuity: \[ 1 + a = 2 + b \quad \text{(Equation 1)} \] 3. **Check Continuity at \( x = 1 \) for \( g(x) \)**: - Left-hand limit as \( x \to 1^- \): \[ g(1^-) = 3(1) + b = 3 + b \] - Right-hand limit as \( x \to 1^+ \): \[ g(1^+) = 1^3 = 1 \] - Set the limits equal for continuity: \[ 3 + b = 1 \quad \text{(Equation 2)} \] 4. **Solve Equation 2 for \( b \)**: \[ b = 1 - 3 = -2 \] 5. **Substitute \( b \) into Equation 1 to find \( a \)**: \[ 1 + a = 2 - 2 \implies 1 + a = 0 \implies a = -1 \] 6. **Find the Derivative of \( f(x) \) and \( g(x) \) at \( x = 1 \)**: - Derivative of \( f(x) \): \[ f'(x) = \begin{cases} 2x & \text{for } 0 \leq x < 1 \\ 2 & \text{for } 1 \leq x \leq 2 \end{cases} \] At \( x = 1 \): \[ f'(1) = 2 \] - Derivative of \( g(x) \): \[ g'(x) = \begin{cases} 3 & \text{for } 0 \leq x < 1 \\ 3x^2 & \text{for } 1 \leq x \leq 2 \end{cases} \] At \( x = 1 \): \[ g'(1) = 3(1^2) = 3 \] 7. **Compute the Derivative of \( f \) with respect to \( g \)**: \[ \frac{df}{dg} = \frac{f'(1)}{g'(1)} = \frac{2}{3} \] Thus, \( \lambda = \frac{2}{3} \). 8. **Check the Options**: - \( a + b = -1 - 2 = -3 \) (Correct) - \( a - b = -1 + 2 = 1 \) (Correct) - \( \frac{ab}{\lambda} = \frac{(-1)(-2)}{\frac{2}{3}} = \frac{2}{\frac{2}{3}} = 3 \) (Correct) - \( -\frac{b}{\lambda} = -\frac{-2}{\frac{2}{3}} = \frac{2 \cdot 3}{2} = 3 \) (Correct) ### Conclusion: All options are correct.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x) ={{:( x+2, 0 le x lt 2),( 6-x, x ge 2):}, g(x) ={{:( 1+ tan x, 0le x lt (pi) /(4)),( 3-cotx,(pi)/(4) le x lt pi ):} f(g(x)) is

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} g(f(x)) is not defined if

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA, x...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} t...

    Text Solution

    |

  4. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  5. Let f(x)=x +(1-x) x ^(2) +[1- x) (1- x^(2)) +…..+ (1-x) …….(1-x ^(n-1)...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f(x) = {{:((sin[x^(2)]pi)/(x^(2)-3x - 18)+ax^(2)+b",","for",0 le x ...

    Text Solution

    |

  8. Let f (x) [ {:(1+x"," , 0 le x le 2),( 3-x"," ,2 lt x le 3):}: g(x...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  10. Let f(x)={{:(,|x|-3,x lt 1),(,|x-2|+a,x ge 1):} g(x)={{:(,2-|x|,x lt...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |