Home
Class 12
MATHS
Let f (x) be a continous function in [-1...

Let f (x) be a continous function in `[-1,1]` such that
`f (x)= [{:((ln (ax ^(2)+ bx +c))/(x ^(2)),,, -1 le x lt 0),(1 ,,, x =0),((sin (e ^(x ^(2))-1))/(x ^(2)),,, 0 lt x le 1):}` Then which of the following is/are corrent

A

`a+b+c=0`

B

`b=a+c`

C

`c=1+b`

D

`b ^(2) +c ^(2) =1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 0 \). The function is defined piecewise as follows: 1. For \( -1 \leq x < 0 \): \[ f(x) = \frac{\ln(ax^2 + bx + c)}{x^2} \] 2. For \( x = 0 \): \[ f(0) = 1 \] 3. For \( 0 < x \leq 1 \): \[ f(x) = \frac{\sin(e^{x^2} - 1)}{x^2} \] ### Step 1: Find the left-hand limit as \( x \) approaches 0 We need to find the limit of \( f(x) \) as \( x \) approaches 0 from the left: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\ln(ax^2 + bx + c)}{x^2} \] ### Step 2: Evaluate the limit As \( x \to 0 \): \[ ax^2 + bx + c \to c \quad \text{(since \( ax^2 \) and \( bx \) both approach 0)} \] Thus, \[ \ln(ax^2 + bx + c) \to \ln(c) \] So we have: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\ln(c)}{x^2} \] This limit tends to \( -\infty \) unless \( c = 1 \) (since \( \ln(1) = 0 \)). Therefore, we set: \[ c = 1 \] ### Step 3: Find the right-hand limit as \( x \) approaches 0 Now we find the limit of \( f(x) \) as \( x \) approaches 0 from the right: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sin(e^{x^2} - 1)}{x^2} \] Using the fact that \( e^{x^2} - 1 \approx x^2 \) as \( x \to 0 \), we can apply L'Hôpital's Rule: \[ \lim_{x \to 0^+} \frac{\sin(e^{x^2} - 1)}{x^2} = \lim_{x \to 0^+} \frac{\sin(x^2)}{x^2} = 1 \] ### Step 4: Set the limits equal for continuity For the function to be continuous at \( x = 0 \): \[ \lim_{x \to 0^-} f(x) = f(0) = \lim_{x \to 0^+} f(x) \] This gives us: \[ 0 = 1 \] This is not possible unless we ensure the numerator also approaches 0. Thus, we need to differentiate \( \ln(ax^2 + bx + c) \) and apply L'Hôpital's Rule. ### Step 5: Differentiate and apply L'Hôpital's Rule Using L'Hôpital's Rule: \[ \lim_{x \to 0^-} \frac{\ln(ax^2 + bx + c)}{x^2} = \lim_{x \to 0^-} \frac{\frac{2ax + b}{ax^2 + bx + c}}{2x} \] Setting \( c = 1 \), we have: \[ \lim_{x \to 0^-} \frac{2a(0) + b}{2(0)(a(0)^2 + b(0) + 1)} = \frac{b}{0} \] This implies \( b = 0 \). ### Step 6: Relate \( a \) and \( c \) Since we have \( c = 1 \) and \( b = 0 \), we can also find \( a \): \[ \lim_{x \to 0^-} \frac{\ln(ax^2 + 0 + 1)}{x^2} = 0 \Rightarrow a = 1 \] ### Summary of Results We have found: - \( a = 1 \) - \( b = 0 \) - \( c = 1 \) ### Step 7: Check the options 1. \( a + b + c = 1 + 0 + 1 = 2 \) (Incorrect) 2. \( b = a + c \Rightarrow 0 = 1 + 1 \) (Incorrect) 3. \( c = a + b \Rightarrow 1 = 1 + 0 \) (Correct) 4. \( b^2 + c^2 = 0^2 + 1^2 = 1 \) (Correct) ### Final Answer The correct options are: - Option C: \( c = a + b \) - Option D: \( b^2 + c^2 = 1 \)
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Find k, if possible, so that f (x)= [{:((ln (2- cos 2x))/(ln ^(2) (1+ sin 3x)),,, x lt 0),(k,,, x=0),((e ^(sin 2x )-1)/(ln (1+ tan 9x)),,, x gt 0):} is continious at x=0.

The function f(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(2b^(2)-4b)/(x^(2)),sqrt2 le x lt oo):} is a continuous for 0 le x lt oo . Then which of the following statements is correct?

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

"If "f(x)={{:(,-x-(pi)/(2),x le -(pi)/(2)),(,-cos x,-(pi)/(2) lt x le 0),(,x-1,0 lt x le 1),(,"In "x,x gt 1):} then which one of the following is not correct?

If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):} is differentiable in [0,2] then: ([.] denotes greatest integer function)

If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):} is differentiable in [0,2] then: ([.] denotes greatest integer function)

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then:

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA, x...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} t...

    Text Solution

    |

  4. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  5. Let f(x)=x +(1-x) x ^(2) +[1- x) (1- x^(2)) +…..+ (1-x) …….(1-x ^(n-1)...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f(x) = {{:((sin[x^(2)]pi)/(x^(2)-3x - 18)+ax^(2)+b",","for",0 le x ...

    Text Solution

    |

  8. Let f (x) [ {:(1+x"," , 0 le x le 2),( 3-x"," ,2 lt x le 3):}: g(x...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  10. Let f(x)={{:(,|x|-3,x lt 1),(,|x-2|+a,x ge 1):} g(x)={{:(,2-|x|,x lt...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |