Home
Class 12
MATHS
The function f (x)=[sqrt(1-sqrt(1-x ^(2)...


The function `f (x)=[sqrt(1-sqrt(1-x ^(2)))],`(where [.] denotes greatest integer function):
i)has domain [−1,1]
ii)is discontinous at two points in its domain
iii) is discontinous at x=0
iv)is discontinous at x = 1

A

has domain `[-1,1]`

B

is discontinous at two points in its domain

C

is discontinous at `x=0`

D

is discontinous at `x=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \lfloor \sqrt{1 - \sqrt{1 - x^2}} \rfloor \) where \( \lfloor . \rfloor \) denotes the greatest integer function. We will go through the steps to determine the domain, points of discontinuity, and check the specific points mentioned in the question. ### Step 1: Determine the Domain of \( f(x) \) The function involves a square root, which requires the expression inside to be non-negative. Thus, we need to ensure: \[ 1 - x^2 \geq 0 \] This implies: \[ x^2 \leq 1 \quad \Rightarrow \quad -1 \leq x \leq 1 \] So, the domain of \( f(x) \) is: \[ \text{Domain} = [-1, 1] \] ### Step 2: Check for Discontinuity at \( x = 0 \) To check for continuity at \( x = 0 \), we need to evaluate the left-hand limit (LHL), right-hand limit (RHL), and the function value at \( x = 0 \). 1. **Right-hand limit as \( x \to 0^+ \)**: \[ \lim_{x \to 0^+} f(x) = \lfloor \sqrt{1 - \sqrt{1 - (0^+)^2}} \rfloor = \lfloor \sqrt{1 - \sqrt{1}} \rfloor = \lfloor \sqrt{0} \rfloor = 0 \] 2. **Left-hand limit as \( x \to 0^- \)**: \[ \lim_{x \to 0^-} f(x) = \lfloor \sqrt{1 - \sqrt{1 - (0^-)^2}} \rfloor = \lfloor \sqrt{1 - \sqrt{1}} \rfloor = \lfloor \sqrt{0} \rfloor = 0 \] 3. **Function value at \( x = 0 \)**: \[ f(0) = \lfloor \sqrt{1 - \sqrt{1 - 0^2}} \rfloor = \lfloor \sqrt{1 - \sqrt{1}} \rfloor = \lfloor \sqrt{0} \rfloor = 0 \] Since LHL = RHL = \( f(0) = 0 \), the function is continuous at \( x = 0 \). ### Step 3: Check for Discontinuity at \( x = 1 \) 1. **Right-hand limit as \( x \to 1^+ \)**: \[ \lim_{x \to 1^+} f(x) = \lfloor \sqrt{1 - \sqrt{1 - (1^+)^2}} \rfloor = \lfloor \sqrt{1 - \sqrt{1 - 1}} \rfloor = \lfloor \sqrt{1 - 0} \rfloor = \lfloor 1 \rfloor = 1 \] 2. **Left-hand limit as \( x \to 1^- \)**: \[ \lim_{x \to 1^-} f(x) = \lfloor \sqrt{1 - \sqrt{1 - (1^-)^2}} \rfloor = \lfloor \sqrt{1 - \sqrt{1 - 1}} \rfloor = \lfloor \sqrt{1 - 0} \rfloor = \lfloor 1 \rfloor = 1 \] 3. **Function value at \( x = 1 \)**: \[ f(1) = \lfloor \sqrt{1 - \sqrt{1 - 1^2}} \rfloor = \lfloor \sqrt{1 - \sqrt{0}} \rfloor = \lfloor \sqrt{1} \rfloor = \lfloor 1 \rfloor = 1 \] Since LHL = RHL = \( f(1) = 1 \), the function is continuous at \( x = 1 \). ### Conclusion - The domain of \( f(x) \) is \( [-1, 1] \). - The function is continuous at both \( x = 0 \) and \( x = 1 \). - Therefore, the function is not discontinuous at the points specified in the question. ### Final Answer i) The domain of \( f(x) \) is \( [-1, 1] \). ii) The function is continuous at both \( x = 0 \) and \( x = 1 \), hence it is not discontinuous at these points.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA, x...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} t...

    Text Solution

    |

  4. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  5. Let f(x)=x +(1-x) x ^(2) +[1- x) (1- x^(2)) +…..+ (1-x) …….(1-x ^(n-1)...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f(x) = {{:((sin[x^(2)]pi)/(x^(2)-3x - 18)+ax^(2)+b",","for",0 le x ...

    Text Solution

    |

  8. Let f (x) [ {:(1+x"," , 0 le x le 2),( 3-x"," ,2 lt x le 3):}: g(x...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  10. Let f(x)={{:(,|x|-3,x lt 1),(,|x-2|+a,x ge 1):} g(x)={{:(,2-|x|,x lt...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |