Home
Class 12
MATHS
If x=phi(t),y=Psi(t)," then "(d^(2)y)/(d...

If `x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2))` is equal to

A

`(phi'psi''-psi'phi'')/((phi')^(2))`

B

`(phi'psi''-psi'phi'')/((phi')^(3))`

C

`(psi'')/(phi') -(psi'phi'')/((phi')^(2))`

D

`(psi'')/((phi')^(2))-(psi'phi'')/((phi')^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) when \(x = \phi(t)\) and \(y = \psi(t)\), we will follow these steps: ### Step 1: Find \(\frac{dy}{dx}\) Using the chain rule, we can express the derivative of \(y\) with respect to \(x\) as: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\psi'(t)}{\phi'(t)} \] ### Step 2: Find \(\frac{d^2y}{dx^2}\) To find the second derivative, we need to differentiate \(\frac{dy}{dx}\) with respect to \(x\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) \] Using the quotient rule for differentiation, where \(u = \psi'(t)\) and \(v = \phi'(t)\): \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Substituting \(u\) and \(v\): \[ \frac{d^2y}{dx^2} = \frac{\phi'(t) \psi''(t) - \psi'(t) \phi''(t)}{(\phi'(t))^2} \] ### Step 3: Change of Variables Since \(\frac{dx}{dt} = \phi'(t)\), we can express \(\frac{d^2y}{dx^2}\) in terms of \(t\): \[ \frac{d^2y}{dx^2} = \frac{\phi'(t) \psi''(t) - \psi'(t) \phi''(t)}{(\phi'(t))^2} \] ### Step 4: Simplify the Expression Now, we can simplify the expression further: \[ \frac{d^2y}{dx^2} = \frac{\phi'(t) \psi''(t)}{(\phi'(t))^2} - \frac{\psi'(t) \phi''(t)}{(\phi'(t))^2} \] This can be rewritten as: \[ \frac{d^2y}{dx^2} = \frac{\psi''(t)}{\phi'(t)} - \frac{\psi'(t) \phi''(t)}{(\phi'(t))^2} \] ### Final Result Thus, the final expression for \(\frac{d^2y}{dx^2}\) is: \[ \frac{d^2y}{dx^2} = \frac{\psi''(t)}{\phi'(t)} - \frac{\psi'(t) \phi''(t)}{(\phi'(t))^2} \] This matches with the options provided in the question.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)

If x=f(t) and y=g(t) , then (d^2y)/(dx^2) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x=varphi(t), y=psi(t),t h e n(d^(2y))/(dx^2) is (a) (varphi^(prime)psi^('')-psi'varphi' ')/((varphi^(prime))^2) (b) (varphi^(prime)psi^('')-psi'varphi' ')/((varphi^(prime))^3) (c) varphi^('')/psi^('') (d) psi^('')/varphi^('')

If u = x^(2) + y^(2) " and " x = s + 3t, y = 2s - t , " then " (d^(2) u)/(ds^(2)) is equal to

If x=varphi(t), y=psi(t),t h e n(d^(2y))/(dx^2) is (varphi^(prime)psi^-psi'varphi' ')/((varphi^(prime))^2) (b) (varphi^(prime)psi^-psi'varphi' ')/((varphi^(prime))^3) varphi^(/)psi^ (d) psi^(/)varphi^

If x=a t^2,y=2a t , then (d^2y)/(dx^2) is equal to (a) -1/(t^2) (b) 1/(2a t^2) (c) -1/(t^3) (d) 1/(2a t^3)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA, x...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} t...

    Text Solution

    |

  4. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  5. Let f(x)=x +(1-x) x ^(2) +[1- x) (1- x^(2)) +…..+ (1-x) …….(1-x ^(n-1)...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f(x) = {{:((sin[x^(2)]pi)/(x^(2)-3x - 18)+ax^(2)+b",","for",0 le x ...

    Text Solution

    |

  8. Let f (x) [ {:(1+x"," , 0 le x le 2),( 3-x"," ,2 lt x le 3):}: g(x...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  10. Let f(x)={{:(,|x|-3,x lt 1),(,|x-2|+a,x ge 1):} g(x)={{:(,2-|x|,x lt...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |