Home
Class 12
MATHS
Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2)...

Let `f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(2) -8x+17,,, x ge3):}:` then which of the following hold(s) good ?

A

`lim _(xto2) f(x) =1`

B

`f (x)` is differentiable at `x=2`

C

`f (x)` is continous at `x=2`

D

`f (x)` is discontinous at `x =3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the piecewise function \( f(x) \) given by: \[ f(x) = \begin{cases} \frac{3x - x^2}{2} & \text{if } x < 2 \\ x - 1 & \text{if } 2 \leq x < 3 \\ x^2 - 8x + 17 & \text{if } x \geq 3 \end{cases} \] We will check the continuity and differentiability of \( f(x) \) at the points \( x = 2 \) and \( x = 3 \). ### Step 1: Check continuity at \( x = 2 \) To check continuity at \( x = 2 \), we need to find: 1. \( \lim_{x \to 2^-} f(x) \) 2. \( \lim_{x \to 2^+} f(x) \) 3. \( f(2) \) **Left-hand limit**: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{3x - x^2}{2} = \frac{3(2) - (2)^2}{2} = \frac{6 - 4}{2} = \frac{2}{2} = 1 \] **Right-hand limit**: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x - 1) = 2 - 1 = 1 \] **Value at \( x = 2 \)**: \[ f(2) = 2 - 1 = 1 \] Since \( \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) = 1 \), the function is continuous at \( x = 2 \). ### Step 2: Check differentiability at \( x = 2 \) To check differentiability at \( x = 2 \), we need to find the left-hand and right-hand derivatives. **Left-hand derivative**: \[ f'(x) = \frac{d}{dx}\left(\frac{3x - x^2}{2}\right) = \frac{3 - 2x}{2} \] \[ \lim_{x \to 2^-} f'(x) = \frac{3 - 2(2)}{2} = \frac{3 - 4}{2} = \frac{-1}{2} \] **Right-hand derivative**: \[ f'(x) = \frac{d}{dx}(x - 1) = 1 \] \[ \lim_{x \to 2^+} f'(x) = 1 \] Since the left-hand derivative \( \frac{-1}{2} \) is not equal to the right-hand derivative \( 1 \), \( f(x) \) is not differentiable at \( x = 2 \). ### Step 3: Check continuity at \( x = 3 \) To check continuity at \( x = 3 \), we need to find: 1. \( \lim_{x \to 3^-} f(x) \) 2. \( \lim_{x \to 3^+} f(x) \) 3. \( f(3) \) **Left-hand limit**: \[ \lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} (x - 1) = 3 - 1 = 2 \] **Right-hand limit**: \[ \lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (x^2 - 8x + 17) = (3)^2 - 8(3) + 17 = 9 - 24 + 17 = 2 \] **Value at \( x = 3 \)**: \[ f(3) = 3^2 - 8(3) + 17 = 9 - 24 + 17 = 2 \] Since \( \lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = f(3) = 2 \), the function is continuous at \( x = 3 \). ### Step 4: Check differentiability at \( x = 3 \) **Left-hand derivative**: \[ \lim_{x \to 3^-} f'(x) = 1 \] **Right-hand derivative**: \[ f'(x) = \frac{d}{dx}(x^2 - 8x + 17) = 2x - 8 \] \[ \lim_{x \to 3^+} f'(x) = 2(3) - 8 = 6 - 8 = -2 \] Since the left-hand derivative \( 1 \) is not equal to the right-hand derivative \( -2 \), \( f(x) \) is not differentiable at \( x = 3 \). ### Conclusion - \( f(x) \) is continuous at \( x = 2 \) and \( x = 3 \). - \( f(x) \) is not differentiable at \( x = 2 \) and \( x = 3 \). - The function is discontinuous at \( x = 3 \). ### Final Answer The correct options are: 1. \( \lim_{x \to 2} f(x) = 1 \) (True) 2. \( f(x) \) is differentiable at \( x = 2 \) (False) 3. \( f(x) \) is continuous at \( x = 2 \) (True) 4. \( f(x) \) is discontinuous at \( x = 3 \) (True)
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} then the tuue equations:

Let f(x)={{:(x^(2)-4x+3",", x lt 3),(x-4",", x ge 3):} and g(x)={{:(x-3",", x lt 4),(x^(2)+2x+2",", x ge 4):} , which one of the following is/are true?

Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln (ax ^(2)+ bx +c))/(x ^(2)),,, -1 le x lt 0),(1 ,,, x =0),((sin (e ^(x ^(2))-1))/(x ^(2)),,, 0 lt x le 1):} Then which of the following is/are corrent

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then:

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA, x...

    Text Solution

    |

  2. Let f(x) =(x^(2)-3x+ 2) (x ^(2) + 3x +2) and alpha, beta, gamma satisf...

    Text Solution

    |

  3. Let f:RtoR is given by f(x)={(p+qx+x^(2),xlt2),(2px+3qx^(2),xge2):} t...

    Text Solution

    |

  4. Let y=e^x s in x^3+(t a n x)^xdotF in d(dy)/(dx)dot

    Text Solution

    |

  5. Let f(x)=x +(1-x) x ^(2) +[1- x) (1- x^(2)) +…..+ (1-x) …….(1-x ^(n-1)...

    Text Solution

    |

  6. Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:...

    Text Solution

    |

  7. If f(x) = {{:((sin[x^(2)]pi)/(x^(2)-3x - 18)+ax^(2)+b",","for",0 le x ...

    Text Solution

    |

  8. Let f (x) [ {:(1+x"," , 0 le x le 2),( 3-x"," ,2 lt x le 3):}: g(x...

    Text Solution

    |

  9. Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ...

    Text Solution

    |

  10. Let f(x)={{:(,|x|-3,x lt 1),(,|x-2|+a,x ge 1):} g(x)={{:(,2-|x|,x lt...

    Text Solution

    |

  11. Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln...

    Text Solution

    |

  12. f (x) is differentiable function satisfying the relationship f ^(2) (x...

    Text Solution

    |

  13. The function f (x)=[sqrt(1-sqrt(1-x ^(2)))],(where [.] denotes greates...

    Text Solution

    |

  14. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  15. The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in"...

    Text Solution

    |

  16. Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+...

    Text Solution

    |

  17. If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  18. f (x)=[x] and g (x)= {{:( 0"," , x in I ),( x ^(2)"," , cancel(in)I)...

    Text Solution

    |

  19. Let f : R ^(+) to R defined as f (x)= e ^(x) + ln x and g = f ^(-1) th...

    Text Solution

    |

  20. Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(...

    Text Solution

    |