Home
Class 12
MATHS
Define: f (x) =|x^(2)-4x +3| ln x+2 (x-...

Define: `f (x) =|x^(2)-4x +3| ln x+2 (x-2)^(1//3) , x gt 0`
`h (x)= {{:(x-1"," , x in Q),(x ^(2) -x-2"," , x cancel (in)Q):}`
h (x) is discontinous at `x =……`

A

`1+ sqrt2`

B

`tan ""(3pi)/(8)`

C

`tan ""(7pi)/(8)`

D

`sqrt2-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the function \( h(x) \) is discontinuous, we will analyze the function defined as follows: \[ h(x) = \begin{cases} x - 1 & \text{if } x \in \mathbb{Q} \\ x^2 - x - 2 & \text{if } x \notin \mathbb{Q} \end{cases} \] ### Step 1: Identify the points of discontinuity To find the points of discontinuity, we need to check where the left-hand limit and right-hand limit do not equal the function value at a point \( \alpha \). ### Step 2: Set up the limits Let’s denote \( \alpha \) as a point where we want to check for continuity. We need to find: 1. \( h(\alpha) \) 2. \( \lim_{x \to \alpha^-} h(x) \) 3. \( \lim_{x \to \alpha^+} h(x) \) ### Step 3: Calculate \( h(\alpha) \) - If \( \alpha \in \mathbb{Q} \), then \( h(\alpha) = \alpha - 1 \). - If \( \alpha \notin \mathbb{Q} \), then \( h(\alpha) = \alpha^2 - \alpha - 2 \). ### Step 4: Calculate the left-hand limit For \( x \) approaching \( \alpha \) from the left (\( x \to \alpha^- \)): - If \( x \in \mathbb{Q} \), then \( h(x) = x - 1 \). - If \( x \notin \mathbb{Q} \), then \( h(x) = x^2 - x - 2 \). Thus, we have: \[ \lim_{x \to \alpha^-} h(x) = \begin{cases} \alpha - 1 & \text{if } \alpha \in \mathbb{Q} \\ \alpha^2 - \alpha - 2 & \text{if } \alpha \notin \mathbb{Q} \end{cases} \] ### Step 5: Calculate the right-hand limit For \( x \) approaching \( \alpha \) from the right (\( x \to \alpha^+ \)): - The analysis is the same as for the left-hand limit. Thus, we have: \[ \lim_{x \to \alpha^+} h(x) = \begin{cases} \alpha - 1 & \text{if } \alpha \in \mathbb{Q} \\ \alpha^2 - \alpha - 2 & \text{if } \alpha \notin \mathbb{Q} \end{cases} \] ### Step 6: Set the limits equal for continuity For \( h(x) \) to be continuous at \( \alpha \): \[ \lim_{x \to \alpha^-} h(x) = \lim_{x \to \alpha^+} h(x) = h(\alpha) \] ### Step 7: Solve the equation We need to solve the equation: \[ \alpha - 1 = \alpha^2 - \alpha - 2 \] Rearranging gives: \[ \alpha^2 - 2\alpha - 1 = 0 \] Using the quadratic formula: \[ \alpha = \frac{2 \pm \sqrt{(2)^2 - 4(1)(-1)}}{2(1)} = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2} \] ### Step 8: Identify discontinuous points The points where \( h(x) \) is discontinuous are \( 1 + \sqrt{2} \) and \( 1 - \sqrt{2} \). ### Conclusion Thus, \( h(x) \) is discontinuous at \( x = 1 + \sqrt{2} \) and \( x = 1 - \sqrt{2} \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Define: f (x) =|x^(2)-4x +3| ln x+2 (x-2)^(1//3) , x gt 0 h (x)= {{:(x-1"," , x in Q),(x ^(2) -x-2"," , x cancel (in)Q):} f (x) is non-differentiable at…… points and the sum of corresponding x value (s) is ……

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

f(x){{:(x^(3) - 3"," if x le 2 ),(x^(2) + 1"," if x gt 2 ):} Check continuity of f(x) at x = 2

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0, is

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

Solve log_(3x -2) x^(2) gt log _(3x-2) (3x -2)

If 3f(x)-f((1)/(x))= log_(e) x^(4) for x gt 0 ,then f(e^(x))=

Find k, if possible, so that f (x)= [{:((ln (2- cos 2x))/(ln ^(2) (1+ sin 3x)),,, x lt 0),(k,,, x=0),((e ^(sin 2x )-1)/(ln (1+ tan 9x)),,, x gt 0):} is continious at x=0.

If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1) =2 , then the value of the pair ( p,q) for which f(x) cannot be continuous at x =1 is:

F(x) = {( (sin(a+2)x + sin x)/x , x lt 0), (b , x = 0), (((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0, find a + 2b .

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. Let f (x) and g (x) be two differentiable functions, defined as: f (...

    Text Solution

    |

  2. Define: f (x) =|x^(2)-4x +3| ln x+2 (x-2)^(1//3) , x gt 0 h (x)= {{:...

    Text Solution

    |

  3. Define: f (x) =|x^(2)-4x +3| ln x+2 (x-2)^(1//3) , x gt 0 h (x)= {{...

    Text Solution

    |

  4. Consider a function defined in [-2,2] f (x)={{:({x}, -2 le x lt -1),...

    Text Solution

    |

  5. Let a function f(x) be defined in [-2, 2] as f(x) = {{:({x}",",, -2 ...

    Text Solution

    |

  6. Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ ...

    Text Solution

    |

  7. Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ ...

    Text Solution

    |

  8. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  9. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  10. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  11. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  12. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  13. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  14. Let f (x) (cos ^(2) x)/(1+ cos +cos ^(2)x )and g (x) lamda tan x+1(1-l...

    Text Solution

    |

  15. Let f (x) = (cos ^(2) x)/(1+ cos x+cos ^(2)x )and g (x) =lamda tan x+(...

    Text Solution

    |

  16. Population evolve to maximize their reproductive potential in the habi...

    Text Solution

    |

  17. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  18. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  19. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  20. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |