Home
Class 12
MATHS
Let f (x) = (cos ^(2) x)/(1+ cos x+cos ^...

Let `f (x) = (cos ^(2) x)/(1+ cos x+cos ^(2)x )and g (x) =lamda tan x+(1-lamda) sin x-x, ` where `lamda in R and x in [0, pi//2).`
The values of `'lamda'` such that `g '(x) ge 0` for any `x in [0, pi//2):`

A

(a) `[1,oo)`

B

(b) `[0,oo)`

C

(c) `[(1)/(2), oo)`

D

(d) `[(1)/(3), oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( g(x) \) and find the values of \( \lambda \) such that \( g'(x) \geq 0 \) for all \( x \) in the interval \( [0, \frac{\pi}{2}) \). ### Step 1: Differentiate \( g(x) \) Given: \[ g(x) = \lambda \tan x + (1 - \lambda) \sin x - x \] To find \( g'(x) \), we differentiate \( g(x) \) with respect to \( x \): \[ g'(x) = \lambda \sec^2 x + (1 - \lambda) \cos x - 1 \] ### Step 2: Rewrite \( g'(x) \) We can express \( g'(x) \) as: \[ g'(x) = \frac{\lambda}{\cos^2 x} + (1 - \lambda) \cos x - 1 \] ### Step 3: Find a common denominator To combine the terms, we will use a common denominator: \[ g'(x) = \frac{\lambda + (1 - \lambda) \cos^3 x - \cos^2 x}{\cos^2 x} \] ### Step 4: Factor \( g'(x) \) Rearranging gives: \[ g'(x) = \frac{(1 - \lambda) \cos^3 x + \lambda - \cos^2 x}{\cos^2 x} \] ### Step 5: Set the condition for \( g'(x) \geq 0 \) For \( g'(x) \geq 0 \), the numerator must be non-negative: \[ (1 - \lambda) \cos^3 x + \lambda - \cos^2 x \geq 0 \] ### Step 6: Analyze the behavior of \( g'(x) \) 1. At \( x = 0 \): \[ g'(0) = (1 - \lambda) \cdot 1^3 + \lambda - 1 = 1 - \lambda + \lambda - 1 = 0 \] 2. At \( x = \frac{\pi}{2} \): \[ g'(\frac{\pi}{2}) \text{ is not defined since } \tan x \text{ and } \sec^2 x \text{ are undefined.} \] ### Step 7: Check the critical points in \( (0, \frac{\pi}{2}) \) We need to check the sign of \( g'(x) \) in the interval. The expression must be non-negative for all \( x \) in \( [0, \frac{\pi}{2}) \). ### Step 8: Determine the bounds of \( f(x) \) Given: \[ f(x) = \frac{\cos^2 x}{1 + \cos x + \cos^2 x} \] 1. At \( x = 0 \): \[ f(0) = \frac{1}{3} \] 2. At \( x = \frac{\pi}{2} \): \[ f(\frac{\pi}{2}) = 0 \] Thus, \( f(x) \) takes values in the interval \( [0, \frac{1}{3}] \). ### Step 9: Set the inequality for \( \lambda \) From \( g'(x) \geq 0 \): \[ \lambda \geq f(x) \] Since \( f(x) \) is in \( [0, \frac{1}{3}] \), we conclude: \[ \lambda \geq 0 \quad \text{and} \quad \lambda \leq \frac{1}{3} \] ### Conclusion The values of \( \lambda \) such that \( g'(x) \geq 0 \) for all \( x \in [0, \frac{\pi}{2}) \) are: \[ \lambda \in [0, \frac{1}{3}] \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

The equation cos ^(2) x - sin x+lamda = 0, x in (0, pi//2) has roots then value(s) of lamda can be equal to :

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

If int _(0) ^(x) (x ^(3) cos ^(4) x sin ^(2)x)/(pi^(2) -3pix + 3x ^(2))dx = lamda int _( 0)^(pi//2)sin ^(2) x dx, then the value of lamda is:

If f (x)= tan ^(-1) (sgn (n ^(2) -lamda x+1)) has exactly one point of discontinuity, then the value of lamda can be:

If f (x) =2x, g (x) =3 sin x -x cos x, then for x in (0, (pi)/(2)):

Let alpha, beta be two real roots of the equation cot ^ 2 x - 2 lamda cot x + 3 = 0 , lamda in R . If cot ( alpha + beta ) = (1)/(2) , then value of lamda is :

Let alpha, beta be two real roots of the equation cot ^ 2 x - 2 lamda cot x + 3 = 0 , lamda in R . If cot ( alpha + beta ) = (1)/(2) , then value of lamda is :

The circle x^2+y^2+4lamdax=0 which lamda in R touches the parabola y^2=8x . The value of lamda is given by

If (x+y)^(2)=2(x^(2)+y^(2))and(x-y+lamda)^(2)=4,lamdagt0, then lamda is equal to :

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  2. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  3. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  4. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  5. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  6. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  7. Let f (x) (cos ^(2) x)/(1+ cos +cos ^(2)x )and g (x) lamda tan x+1(1-l...

    Text Solution

    |

  8. Let f (x) = (cos ^(2) x)/(1+ cos x+cos ^(2)x )and g (x) =lamda tan x+(...

    Text Solution

    |

  9. Population evolve to maximize their reproductive potential in the habi...

    Text Solution

    |

  10. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  11. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  12. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  13. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |

  14. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |

  15. Let f (x) be a polynomial satisfying lim (x to oo) (x ^(4) f (x))/( x ...

    Text Solution

    |

  16. Let f (x) be a polynomial satisfying lim (x to oo) (x ^(4) f (x))/( x ...

    Text Solution

    |

  17. Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta b...

    Text Solution

    |

  18. Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta b...

    Text Solution

    |

  19. Let f (n) x+ f (n) (y ) = (x ^(n)+y ^(n))/(x ^(n) y ^(n))AA x, y in R-...

    Text Solution

    |

  20. Let f (n) x+ f (n) (y ) = (x ^(n)+y ^(n))/(x ^(n) y ^(n))AA x, y in R-...

    Text Solution

    |