Home
Class 12
MATHS
Consider f (x) = x ^(ln x), and g (x) = ...

Consider `f (x) = x ^(ln x), and g (x) = e ^(2) x.` Let `alpha and beta` be two values of x satisfying `f (x) = g(x)( alpha lt beta)`
If `h (x) = (f (x))/(g (x))` then `h'(alpha)` equals to:

A

(a) e

B

(b)`-e`

C

(c) `3e`

D

(d)`-3e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( h'(\alpha) \) where \( h(x) = \frac{f(x)}{g(x)} \) and \( f(x) = x^{\ln x} \) and \( g(x) = e^{2x} \). We know that \( \alpha \) and \( \beta \) are values of \( x \) such that \( f(x) = g(x) \). ### Step 1: Set up the equation Given: \[ f(x) = g(x) \implies x^{\ln x} = e^{2x} \] ### Step 2: Rewrite the equation Rearranging gives: \[ \frac{x^{\ln x}}{e^{2x}} = 1 \] This can be rewritten as: \[ x^{\ln x - 2} = e^0 \] ### Step 3: Take the natural logarithm of both sides Taking the natural logarithm: \[ \ln(x^{\ln x - 2}) = \ln(1) \implies (\ln x - 2) \ln x = 0 \] ### Step 4: Solve the equation This gives us two cases: 1. \( \ln x = 0 \) which implies \( x = e^0 = 1 \) 2. \( \ln x - 2 = 0 \) which implies \( \ln x = 2 \) or \( x = e^2 \) Thus, the solutions are \( x = 1 \) and \( x = e^2 \). Since \( \alpha < \beta \), we have \( \alpha = 1 \) and \( \beta = e^2 \). ### Step 5: Define \( h(x) \) Now we define: \[ h(x) = \frac{f(x)}{g(x)} = \frac{x^{\ln x}}{e^{2x}} \] ### Step 6: Differentiate \( h(x) \) Using the quotient rule: \[ h'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \] ### Step 7: Find \( f'(x) \) and \( g'(x) \) 1. For \( f(x) = x^{\ln x} \): - Using logarithmic differentiation: \[ \ln f(x) = \ln x \cdot \ln x \implies f'(x) = f(x) \left( \frac{\ln x + 1}{x} \right) = x^{\ln x} \left( \frac{\ln x + 1}{x} \right) \] 2. For \( g(x) = e^{2x} \): \[ g'(x) = 2e^{2x} \] ### Step 8: Substitute into \( h'(x) \) Now substituting back into the derivative: \[ h'(x) = \frac{e^{2x} \cdot x^{\ln x} \left( \frac{\ln x + 1}{x} \right) - x^{\ln x} \cdot 2e^{2x}}{(e^{2x})^2} \] Simplifying: \[ h'(x) = \frac{x^{\ln x} e^{2x} \left( \frac{\ln x + 1 - 2}{x} \right)}{e^{4x}} = \frac{x^{\ln x} \left( \ln x - 1 \right)}{e^{2x} x} \] ### Step 9: Evaluate \( h'(\alpha) \) Substituting \( \alpha = 1 \): \[ h'(1) = \frac{1^{\ln 1} \left( \ln 1 - 1 \right)}{e^{2 \cdot 1} \cdot 1} = \frac{1^0 \cdot (0 - 1)}{e^2} = \frac{-1}{e^2} \] ### Final Answer Thus, \( h'(\alpha) = -\frac{1}{e^2} \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta be two values of x satisfying f (x) = g(x)( alpha lt beta) lim _(x to beta) (f (x) -c beta)/(g (x) - beta ^(2))=l then the value of x -l equals to:

If f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)] , then find the value of h(10).

Let f(x)=sinx,g(x)=x^(2) and h(x)=log_(e)x. If F(x)=("hog of ")(x)," then "F''(x) is equal to

Let f(x)=(alphax)/(x+1),x!=-1. Then write the value of alpha satisfying f(f(x))=x for all x!=-1.

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .

If f(x)=e^(x) and g(x)=f(x)+f^(-1) , what does g(2) equal?

Let f (x) = log _e (sinx ), ( 0 lt x lt pi ) and g(x) = sin ^(-1) (e ^(-x)), (x ge 0) . If alpha is a positive real number such that a = ( fog)' ( alpha ) and b = (fog ) ( alpha ) , then

If f(x) = log_(e^2x) ((2lnx+2)/(-x)) and g(x) = {x} then range of g(x) for existance of f(g(x)) is

Let f(x) = 3x^(2) + 6x + 5 and g(x) = x + 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x)

Let f(x)=x^2 and g(x) = 2x + 1 be two real functions. find (f +g)(x) , (f-g)(x) , (fg)(x) , (f/g)(x) .

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  2. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  3. Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]=...

    Text Solution

    |

  4. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  5. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  6. Let f :R to R be a continous and differentiable function such that f (...

    Text Solution

    |

  7. Let f (x) (cos ^(2) x)/(1+ cos +cos ^(2)x )and g (x) lamda tan x+1(1-l...

    Text Solution

    |

  8. Let f (x) = (cos ^(2) x)/(1+ cos x+cos ^(2)x )and g (x) =lamda tan x+(...

    Text Solution

    |

  9. Population evolve to maximize their reproductive potential in the habi...

    Text Solution

    |

  10. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  11. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  12. Let f and g be two differentiable functins such that: f (x)=g '(1) s...

    Text Solution

    |

  13. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |

  14. Suppose a function f(x) satisfies the following conditions f (x+y) =...

    Text Solution

    |

  15. Let f (x) be a polynomial satisfying lim (x to oo) (x ^(4) f (x))/( x ...

    Text Solution

    |

  16. Let f (x) be a polynomial satisfying lim (x to oo) (x ^(4) f (x))/( x ...

    Text Solution

    |

  17. Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta b...

    Text Solution

    |

  18. Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta b...

    Text Solution

    |

  19. Let f (n) x+ f (n) (y ) = (x ^(n)+y ^(n))/(x ^(n) y ^(n))AA x, y in R-...

    Text Solution

    |

  20. Let f (n) x+ f (n) (y ) = (x ^(n)+y ^(n))/(x ^(n) y ^(n))AA x, y in R-...

    Text Solution

    |