Home
Class 12
MATHS
The number of values of x , x ∈ [-2,3] w...

The number of values of `x , x ∈ [-2,3]` where `f (x) =[x ^(2)] sin (pix)` is discontinous is (where [.] denotes greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of values of \( x \) in the interval \( [-2, 3] \) where the function \( f(x) = [x^2] \sin(\pi x) \) is discontinuous, we will follow these steps: ### Step 1: Identify points of discontinuity The function \( f(x) \) can be discontinuous at points where either the greatest integer function \( [x^2] \) changes its value or where \( \sin(\pi x) = 0 \). ### Step 2: Find where \( [x^2] \) changes its value The greatest integer function \( [x^2] \) changes its value at integer points of \( x^2 \). We need to find the integer values of \( n \) such that \( n = x^2 \) for \( x \in [-2, 3] \). Calculating the range of \( x^2 \): - At \( x = -2 \), \( x^2 = 4 \). - At \( x = 3 \), \( x^2 = 9 \). Thus, \( x^2 \) can take values from \( 0 \) to \( 9 \). The integer values of \( n \) are \( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \). The corresponding \( x \) values for these integers are: - \( n = 0 \) gives \( x = 0 \) - \( n = 1 \) gives \( x = \pm 1 \) - \( n = 2 \) gives \( x = \pm \sqrt{2} \) - \( n = 3 \) gives \( x = \pm \sqrt{3} \) - \( n = 4 \) gives \( x = \pm 2 \) ### Step 3: Identify points where \( \sin(\pi x) = 0 \) The sine function is zero at integer multiples of \( \pi \): - \( \sin(\pi x) = 0 \) when \( x \) is an integer. The integers in the interval \( [-2, 3] \) are \( -2, -1, 0, 1, 2, 3 \). ### Step 4: Find points of discontinuity The function \( f(x) \) will be discontinuous at points where \( [x^2] \) changes and \( \sin(\pi x) \) is not zero. From the values we found: - \( [x^2] \) changes at \( x = 0, \pm 1, \pm \sqrt{2}, \pm \sqrt{3}, \pm 2 \). - The points where \( \sin(\pi x) = 0 \) are \( -2, -1, 0, 1, 2, 3 \). Now, we need to exclude the points where both conditions are satisfied (i.e., where \( [x^2] \) changes and \( \sin(\pi x) = 0 \)): - The points \( -2, -1, 0, 1, 2 \) are both points of discontinuity due to \( [x^2] \) and \( \sin(\pi x) \). ### Step 5: Count the discontinuous points The points of discontinuity where \( [x^2] \) changes but \( \sin(\pi x) \) is not zero are: - \( \sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3} \) Thus, the total points of discontinuity are: - \( -\sqrt{3}, -\sqrt{2}, \sqrt{2}, \sqrt{3} \) (4 points). Adding the points where \( \sin(\pi x) \) is zero and \( [x^2] \) does not change: - \( -2, -1, 0, 1, 2 \) (5 points). ### Final Count The total number of points where \( f(x) \) is discontinuous is \( 4 + 5 = 9 \). ### Conclusion The number of values of \( x \) in the interval \( [-2, 3] \) where \( f(x) \) is discontinuous is **9**. ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The number of points where f(x)= sgn (x^(2)-3x+2)+[x-3], x in [0,4], is discontinuous is (where [.] denotes the greatest integer function )_____.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

The equation x^2 - 2 = [sin x], where [.] denotes the greatest integer function, has

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  2. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  3. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  4. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  5. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  6. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  7. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  8. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  9. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  10. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  11. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  12. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  13. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  14. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  15. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  16. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  17. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  18. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |