Home
Class 12
MATHS
Let f (x)= {{:(2-x"," , -3 le x le 0),( ...

Let `f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):}` Then `f ^(-1)` (x) is discontinous at x=

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the inverse function \( f^{-1}(x) \) is discontinuous, we first need to find the inverse of the given piecewise function \( f(x) \). ### Step 1: Define the function \( f(x) \) The function is defined as: \[ f(x) = \begin{cases} 2 - x & \text{for } -3 \leq x \leq 0 \\ x - 2 & \text{for } 0 < x < 4 \end{cases} \] ### Step 2: Find the inverse for each piece of \( f(x) \) #### For the first piece \( f(x) = 2 - x \) where \( -3 \leq x \leq 0 \): To find the inverse, we set \( y = 2 - x \) and solve for \( x \): \[ x = 2 - y \] Thus, the inverse function for this interval is: \[ f^{-1}(x) = 2 - x \quad \text{for } 2 \leq x \leq 5 \] (Here, we find the range by substituting the endpoints of the domain: \( f(-3) = 5 \) and \( f(0) = 2 \)). #### For the second piece \( f(x) = x - 2 \) where \( 0 < x < 4 \): Setting \( y = x - 2 \) and solving for \( x \): \[ x = y + 2 \] Thus, the inverse function for this interval is: \[ f^{-1}(x) = x + 2 \quad \text{for } -2 < x < 2 \] (Here, we find the range by substituting the endpoints of the domain: \( f(0) = -2 \) and \( f(4) = 2 \)). ### Step 3: Combine the inverses Now we can write the complete inverse function: \[ f^{-1}(x) = \begin{cases} 2 - x & \text{for } 2 \leq x \leq 5 \\ x + 2 & \text{for } -2 < x < 2 \end{cases} \] ### Step 4: Check for continuity at the point where the pieces meet The two pieces of the inverse function meet at \( x = 2 \). We need to check the continuity at this point. #### Left-hand limit (LHL) as \( x \) approaches 2: Using the second piece: \[ \lim_{x \to 2^-} f^{-1}(x) = 2 + 2 = 4 \] #### Right-hand limit (RHL) as \( x \) approaches 2: Using the first piece: \[ \lim_{x \to 2^+} f^{-1}(x) = 2 - 2 = 0 \] ### Step 5: Compare the limits Since: \[ \text{LHL} = 4 \quad \text{and} \quad \text{RHL} = 0 \] we find that \( \text{LHL} \neq \text{RHL} \). ### Conclusion Thus, the function \( f^{-1}(x) \) is discontinuous at: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Show that the function f(x) = {{:(2x+3",",-3 le x lt -2),(x+1",",-2 le x lt 0),(x+2",",0 le x le 1):} is discontinuous at x = 0 and continuous at every point in interval [-3, 1]

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

Let f (x)= {{:(a-3x,,, -2 le x lt 0),( 4x+-3,,, 0 le x lt 1):},if f (x) has smallest valueat x=0, then range of a, is

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 ),(" "37 - x," "2 lt x le 3 ):} is continuous at x = 2

Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, then lim _(xto0), f ({(x)/(tan x)})is :({.} denotes fractional part of function)

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  2. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  3. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  4. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  5. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  6. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  7. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  8. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  9. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  10. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  11. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  12. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  13. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  14. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  15. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of point of function f (x) = min (...

    Text Solution

    |