Home
Class 12
MATHS
If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(...

If `(d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))= a sin ^(2) x+b sin x+c ` then the value of `b+c -a` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function given and express it in the form \( a \sin^2 x + b \sin x + c \). Let's go through the steps one by one. ### Step 1: Simplify the Expression We start with the expression: \[ \frac{\sin^4 x + \sin^2 x + 1}{\sin^2 x + \sin x + 1} \] Using the identity \( a^4 + a^2 + 1 = (a^2 + a + 1)(a^2 - a + 1) \), let \( a = \sin x \): \[ \sin^4 x + \sin^2 x + 1 = (\sin^2 x + \sin x + 1)(\sin^2 x - \sin x + 1) \] Thus, we can rewrite the expression as: \[ \frac{(\sin^2 x + \sin x + 1)(\sin^2 x - \sin x + 1)}{\sin^2 x + \sin x + 1} \] The \( \sin^2 x + \sin x + 1 \) terms cancel out, leaving us with: \[ \sin^2 x - \sin x + 1 \] ### Step 2: Find the First Derivative Let \( y = \sin^2 x - \sin x + 1 \). We now find the first derivative \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{d}{dx}(\sin^2 x) - \frac{d}{dx}(\sin x) + \frac{d}{dx}(1) \] Using the chain rule and the derivative of sine: \[ \frac{dy}{dx} = 2 \sin x \cos x - \cos x + 0 \] This simplifies to: \[ \frac{dy}{dx} = (2 \sin x - 1) \cos x \] ### Step 3: Find the Second Derivative Now, we need to find the second derivative \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}((2 \sin x - 1) \cos x) \] Using the product rule: \[ \frac{d^2y}{dx^2} = (2 \cos x)(\cos x) + (2 \sin x - 1)(-\sin x) \] This expands to: \[ \frac{d^2y}{dx^2} = 2 \cos^2 x - (2 \sin^2 x - \sin x) \] ### Step 4: Simplify the Second Derivative Using the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \frac{d^2y}{dx^2} = 2(1 - \sin^2 x) - (2 \sin^2 x - \sin x) \] This simplifies to: \[ \frac{d^2y}{dx^2} = 2 - 2 \sin^2 x - 2 \sin^2 x + \sin x \] Combining like terms gives: \[ \frac{d^2y}{dx^2} = 2 - 4 \sin^2 x + \sin x \] ### Step 5: Compare with the Given Form We need to express this in the form \( a \sin^2 x + b \sin x + c \): \[ \frac{d^2y}{dx^2} = -4 \sin^2 x + 1 \sin x + 2 \] From this, we can identify: - \( a = -4 \) - \( b = 1 \) - \( c = 2 \) ### Step 6: Calculate \( b + c - a \) Now, we calculate: \[ b + c - a = 1 + 2 - (-4) = 1 + 2 + 4 = 7 \] ### Final Answer Thus, the value of \( b + c - a \) is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

Prove that : sin 2x + 2 sin 4x + sin 6x = 4 cos^2 x sin 4x .

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Prove that : sin^(2) 6x - sin^(2)4x = sin 2x *sin10x

Prove that: sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos (3x)/2

If int(cos^(4)x)/(sin^(2)x)dx=A cot x +B sin 2x +(C)/(2)x+D , then

Prove that sqrt((2 sin 2x- sin 4x)/( 2 sin 2x+ sin 4x))= tan x .

int sin^(5//2)x cos^(3)x dx = 2 sin^(A//2)x[(1)/(B)-(1)/(C) sin^(2)x]+D , then the value of (A+B)-C is equal to ........ .

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  2. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  3. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  4. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  5. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  6. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  7. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  8. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  9. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  10. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  11. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  12. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  13. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  14. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  15. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of point of function f (x) = min (...

    Text Solution

    |