Home
Class 12
MATHS
If y=e^(2 sin ^(-1)x) then |((x ^(2) -1)...

If `y=e^(2 sin ^(-1)x)` then `|((x ^(2) -1) y ^('') +xy')/(y)|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the function given: **Step 1: Define the function** Given \( y = e^{2 \sin^{-1}(x)} \). **Step 2: Differentiate \( y \) to find \( y' \)** Using the chain rule, we differentiate \( y \): \[ y' = \frac{d}{dx}(e^{2 \sin^{-1}(x)}) = e^{2 \sin^{-1}(x)} \cdot \frac{d}{dx}(2 \sin^{-1}(x)) = e^{2 \sin^{-1}(x)} \cdot \frac{2}{\sqrt{1 - x^2}}. \] Thus, \[ y' = \frac{2 e^{2 \sin^{-1}(x)}}{\sqrt{1 - x^2}}. \] **Step 3: Differentiate \( y' \) to find \( y'' \)** Now we differentiate \( y' \): \[ y'' = \frac{d}{dx}\left(\frac{2 e^{2 \sin^{-1}(x)}}{\sqrt{1 - x^2}}\right). \] Using the quotient rule: \[ y'' = \frac{(u'v - uv')}{v^2}, \] where \( u = 2 e^{2 \sin^{-1}(x)} \) and \( v = \sqrt{1 - x^2} \). Calculating \( u' \): \[ u' = 2 \cdot e^{2 \sin^{-1}(x)} \cdot \frac{2}{\sqrt{1 - x^2}} = \frac{4 e^{2 \sin^{-1}(x)}}{\sqrt{1 - x^2}}. \] Calculating \( v' \): \[ v' = \frac{-x}{\sqrt{1 - x^2}}. \] Now substituting into the quotient rule: \[ y'' = \frac{\left(\frac{4 e^{2 \sin^{-1}(x)}}{\sqrt{1 - x^2}} \cdot \sqrt{1 - x^2} - 2 e^{2 \sin^{-1}(x)} \cdot \left(-\frac{x}{\sqrt{1 - x^2}}\right)\right)}{1 - x^2}. \] This simplifies to: \[ y'' = \frac{4 e^{2 \sin^{-1}(x)} + 2 x e^{2 \sin^{-1}(x)}}{(1 - x^2)^{3/2}}. \] Thus, \[ y'' = \frac{2 e^{2 \sin^{-1}(x)} (2 + x)}{(1 - x^2)^{3/2}}. \] **Step 4: Substitute into the expression** Now we substitute \( y \), \( y' \), and \( y'' \) into the expression: \[ \left| \frac{(x^2 - 1) y'' + x y'}{y} \right|. \] Substituting: \[ = \left| \frac{(x^2 - 1) \cdot \frac{2 e^{2 \sin^{-1}(x)} (2 + x)}{(1 - x^2)^{3/2}} + x \cdot \frac{2 e^{2 \sin^{-1}(x)}}{\sqrt{1 - x^2}}}{e^{2 \sin^{-1}(x)}} \right|. \] This simplifies to: \[ = \left| \frac{2 e^{2 \sin^{-1}(x)} \left( (x^2 - 1)(2 + x) \cdot \frac{1}{(1 - x^2)^{3/2}} + x \cdot \frac{1}{\sqrt{1 - x^2}} \right)}{e^{2 \sin^{-1}(x)}} \right|. \] The \( e^{2 \sin^{-1}(x)} \) cancels out: \[ = \left| 2 \left( \frac{(x^2 - 1)(2 + x)}{(1 - x^2)^{3/2}} + \frac{x}{\sqrt{1 - x^2}} \right) \right|. \] **Step 5: Simplify the expression** This can be simplified further: \[ = 2 \left| \frac{(x^2 - 1)(2 + x) + x(1 - x^2)}{(1 - x^2)^{3/2}} \right|. \] This leads to: \[ = 2 \left| \frac{2x^2 - 2 + x - x^3}{(1 - x^2)^{3/2}} \right|. \] Thus, the final answer is: \[ = \frac{2(2 - x^2 + x)}{(1 - x^2)^{3/2}}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to (a) x+y (b) 1+x y (c) 1-x y (d) x y-2

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to x+y (b) 1+x y 1-x y (d) x y-2

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to x+y (b) 1+x y 1-x y (d) x y-2

If y = (e^(x)+1)/(e^(x)-1), " then" (y^(2))/2 + (dy)/(dx) is equal to

If y=sin(m\ sin^(-1)x) , then (1-x^2)y_2-x y_1 is equal to m^2y (b) m y (c) -m^2y (d) none of these

If y=e^(tanx) , then (cos^2x)y2-(1+sin2x)y1=0

If e^(x + y) = y^2 then (d^2y)/(dx^2) at ( -1, 1 ) is equal to :

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to 1 (b) 2 (c) 1/2 (d) none of these

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  2. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  3. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  4. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  5. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  6. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  7. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  8. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  9. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  10. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  11. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  12. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  13. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  14. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  15. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of point of function f (x) = min (...

    Text Solution

    |