Home
Class 12
MATHS
Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 ...

Let `f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)` and let `g (x) = f ^(-1) (x).` Find `g'''(o).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( g'''(0) \) where \( g(x) = f^{-1}(x) \) and \( f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} \). ### Step 1: Understand the relationship between \( f(x) \) and \( g(x) \) Since \( g(x) = f^{-1}(x) \), we have: \[ f(g(x)) = x \] Differentiating both sides with respect to \( x \): \[ f'(g(x)) \cdot g'(x) = 1 \] Thus, \[ g'(x) = \frac{1}{f'(g(x))} \] ### Step 2: Differentiate to find \( g''(x) \) Now differentiate \( g'(x) \): \[ g''(x) = \frac{d}{dx}\left(\frac{1}{f'(g(x))}\right) \] Using the chain rule: \[ g''(x) = -\frac{f''(g(x)) \cdot g'(x)}{(f'(g(x)))^2} \] Substituting \( g'(x) \): \[ g''(x) = -\frac{f''(g(x)) \cdot \frac{1}{f'(g(x))}}{(f'(g(x)))^2} = -\frac{f''(g(x))}{(f'(g(x)))^3} \] ### Step 3: Differentiate to find \( g'''(x) \) Now differentiate \( g''(x) \): \[ g'''(x) = -\frac{d}{dx}\left(\frac{f''(g(x))}{(f'(g(x)))^3}\right) \] Using the quotient rule: \[ g'''(x) = -\left(\frac{(f'''(g(x)) \cdot g'(x))(f'(g(x)))^3 - f''(g(x)) \cdot 3(f'(g(x)))^2 f''(g(x)) \cdot g'(x)}{(f'(g(x)))^6}\right) \] Substituting \( g'(x) \): \[ g'''(x) = -\frac{(f'''(g(x)) \cdot \frac{1}{f'(g(x))})(f'(g(x)))^3 - f''(g(x)) \cdot 3(f'(g(x)))^2 f''(g(x)) \cdot \frac{1}{f'(g(x)))}}{(f'(g(x)))^6} \] ### Step 4: Evaluate at \( x = 0 \) To find \( g'''(0) \), we need \( g(0) \), \( f'(0) \), \( f''(0) \), and \( f'''(0) \). 1. **Calculate \( f(0) \)**: \[ f(0) = 0 + 0 + 0 + 0 + 0 = 0 \quad \Rightarrow \quad g(0) = 0 \] 2. **Calculate \( f'(x) \)**: \[ f'(x) = 1 + x + x^2 + x^3 + x^4 \] Thus, \[ f'(0) = 1 \] 3. **Calculate \( f''(x) \)**: \[ f''(x) = 1 + 2x + 3x^2 + 4x^3 \] Thus, \[ f''(0) = 1 \] 4. **Calculate \( f'''(x) \)**: \[ f'''(x) = 2 + 6x + 12x^2 \] Thus, \[ f'''(0) = 2 \] ### Step 5: Substitute back into \( g'''(0) \) Now substituting into the expression for \( g'''(0) \): \[ g'''(0) = -\frac{(f'''(0) \cdot 1)(1)^3 - (1) \cdot 3(1)^2(1) \cdot 1}{(1)^6} \] \[ g'''(0) = -\frac{(2)(1) - 3(1)(1)}{1} = -\frac{2 - 3}{1} = -(-1) = 1 \] ### Final Result Thus, the final result is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g be inverse function of f and h (x)= (a+bx ^(3//2))/(x ^(5//4)),h '(5)=0, then (a^(2))/(5b^(2) g'((-7)/(6)))=

If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cosx +5 and g (x) =f ^(-1) (x), then the value of g'(6) equals:

Let f(x) = x+5 and g(x) = x -5 , x in R . Find (fog)(5).

Let f(x)=[x] and g(x)=|x| . Find (f+2g)(-1)

Let f(x)=[x] and g(x)=|x| . Find (gof)(5/3) fog(5/3)

Let f(x)=[x] and g(x)=|x| . Find (gof)(5/3) fog(5/3)

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

If f(x)=4x-5 and g(x)=3^(x) , then f(g(2)) =

Let f(x)=2x-sinx and g(x) = 3^(sqrtx) . Then

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  2. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  3. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  4. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  5. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  6. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  7. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  8. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  9. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  10. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  11. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  12. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  13. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  14. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  15. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of point of function f (x) = min (...

    Text Solution

    |