Home
Class 12
MATHS
Let f :R to R be a differentiable functi...

Let `f :R to R` be a differentiable function satisfying:
`f (xy) =(f(x))/(y)+f(y)/(x) AAx, y in R ^(+) ` also `f (1)=0,f '(1) =1`
find `lim _(x to e) [(1)/(f (x))]` (where [.] denotes greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given function \( f \) and its properties. Let's break down the solution step by step. ### Step 1: Understand the functional equation We are given the functional equation: \[ f(xy) = \frac{f(x)}{y} + \frac{f(y)}{x} \] for all \( x, y \in \mathbb{R}^+ \). ### Step 2: Substitute specific values Let's substitute \( x = 1 \) into the functional equation: \[ f(1 \cdot y) = \frac{f(1)}{y} + \frac{f(y)}{1} \] Since \( f(1) = 0 \), this simplifies to: \[ f(y) = 0 + f(y) \implies f(y) = f(y) \] This does not provide new information. ### Step 3: Differentiate the functional equation Next, we differentiate both sides of the functional equation with respect to \( y \): \[ \frac{d}{dy} f(xy) = \frac{d}{dy} \left( \frac{f(x)}{y} + \frac{f(y)}{x} \right) \] Using the chain rule on the left side, we have: \[ x f'(xy) = -\frac{f(x)}{y^2} + \frac{f'(y)}{x} \] ### Step 4: Evaluate at \( y = 1 \) Substituting \( y = 1 \) gives: \[ x f'(x) = -f(x) + \frac{f'(1)}{x} \] Since \( f'(1) = 1 \), we have: \[ x f'(x) = -f(x) + \frac{1}{x} \] Rearranging gives: \[ x f'(x) + f(x) = \frac{1}{x} \] ### Step 5: Solve the differential equation This is a first-order linear differential equation. We can rewrite it as: \[ f'(x) + \frac{f(x)}{x} = \frac{1}{x^2} \] The integrating factor is \( e^{\int \frac{1}{x} dx} = x \). Multiplying through by the integrating factor: \[ x f'(x) + f(x) = \frac{1}{x} \] Integrating both sides: \[ \int d(x f(x)) = \int \frac{1}{x} dx \] This gives: \[ x f(x) = \log x + C \] Thus: \[ f(x) = \frac{\log x + C}{x} \] ### Step 6: Use initial conditions to find \( C \) Using the condition \( f(1) = 0 \): \[ f(1) = \frac{\log 1 + C}{1} = C = 0 \] So we have: \[ f(x) = \frac{\log x}{x} \] ### Step 7: Find \( \lim_{x \to e} \frac{1}{f(x)} \) Now we need to find: \[ \lim_{x \to e} \frac{1}{f(x)} = \lim_{x \to e} \frac{x}{\log x} \] Substituting \( x = e \): \[ \frac{e}{\log e} = \frac{e}{1} = e \] ### Step 8: Apply the greatest integer function Finally, we need to find the greatest integer function: \[ \lfloor e \rfloor \] Since \( e \approx 2.718 \), we have: \[ \lfloor e \rfloor = 2 \] ### Final Answer Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let 'f' be a fifferentiable real valued function satisfying f (x+2y) =f (x) +f (2y) + 6xy (x+2y) AA x, y in R. Then f ' (0), f" (1), f'(2)….. are in

If f:R-{-1}toR and f is differentiable function satisfies: f((x)+f(y)+xf(y))=y+f(x)+yf(x)AAx, yinR-{_1} Find f(x).

If f is a real- valued differentiable function satisfying |f(x) - f(y)| le (x-y)^(2) ,x ,y , in R and f(0) =0 then f(1) equals

LEt F: R->R is a differntiable function f(x+2y) =f(x) + f(2y) +4xy for all x,y in R

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

Let f : R rarr R be a differentiable function satisfying f(x) = f(y) f(x - y), AA x, y in R and f'(0) = int_(0)^(4) {2x}dx , where {.} denotes the fractional part function and f'(-3) = alpha e^(beta) . Then, |alpha + beta| is equal to.......

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Let f be a real valued function satisfying 2f(xy) = {f(x)}^(y) + {f(y)}^(x), AA x, y in R and f(1) = 2, then find underset(K = 1)overset(2008)sum f(K)

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  2. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  3. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  4. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  5. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  6. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  7. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  8. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  9. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  10. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  11. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  12. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  13. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  14. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  15. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of point of function f (x) = min (...

    Text Solution

    |