Home
Class 12
MATHS
Let f (x) = x tan ^(-1) (x^(2)) + x^(4) ...

Let `f (x) = x tan ^(-1) (x^(2)) + x^(4)` Let `f ^(k) (x)` denotes `k ^(th)` derivative of `f (x)` w.r.t. `x, k in N. `If
`f^(2m)` (0) != 0, m belongs to N, then m =

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivatives of the function \( f(x) = x \tan^{-1}(x^2) + x^4 \) and determine the smallest natural number \( m \) such that \( f^{(2m)}(0) \neq 0 \). ### Step 1: Find the first derivative \( f'(x) \) Using the product rule and the chain rule, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[x \tan^{-1}(x^2)] + \frac{d}{dx}[x^4] \] For the first term \( x \tan^{-1}(x^2) \): - Let \( u = x \) and \( v = \tan^{-1}(x^2) \). - Then, \( u' = 1 \) and \( v' = \frac{2x}{1 + x^4} \) (using the chain rule). Applying the product rule: \[ f'(x) = u'v + uv' = \tan^{-1}(x^2) + x \cdot \frac{2x}{1 + x^4} + 4x^3 \] \[ = \tan^{-1}(x^2) + \frac{2x^2}{1 + x^4} + 4x^3 \] ### Step 2: Evaluate \( f'(0) \) Substituting \( x = 0 \): \[ f'(0) = \tan^{-1}(0) + \frac{2 \cdot 0^2}{1 + 0^4} + 4 \cdot 0^3 = 0 + 0 + 0 = 0 \] ### Step 3: Find the second derivative \( f''(x) \) We differentiate \( f'(x) \): \[ f''(x) = \frac{d}{dx} \left[ \tan^{-1}(x^2) + \frac{2x^2}{1 + x^4} + 4x^3 \right] \] Differentiating each term: 1. For \( \tan^{-1}(x^2) \): \[ \frac{d}{dx} \tan^{-1}(x^2) = \frac{2x}{1 + x^4} \] 2. For \( \frac{2x^2}{1 + x^4} \) (using the quotient rule): \[ = \frac{(2x)(1 + x^4) - 2x^2(4x^3)}{(1 + x^4)^2} = \frac{2x + 2x^5 - 8x^5}{(1 + x^4)^2} = \frac{2x - 6x^5}{(1 + x^4)^2} \] 3. For \( 4x^3 \): \[ = 12x^2 \] Combining these, we have: \[ f''(x) = \frac{2x}{1 + x^4} + \frac{2x - 6x^5}{(1 + x^4)^2} + 12x^2 \] ### Step 4: Evaluate \( f''(0) \) Substituting \( x = 0 \): \[ f''(0) = \frac{2 \cdot 0}{1 + 0^4} + \frac{2 \cdot 0 - 6 \cdot 0^5}{(1 + 0^4)^2} + 12 \cdot 0^2 = 0 + 0 + 0 = 0 \] ### Step 5: Find the third derivative \( f'''(x) \) We differentiate \( f''(x) \) again. This process is similar to previous steps, but we can skip directly to evaluating \( f'''(0) \) after finding the expression. ### Step 6: Find the fourth derivative \( f^{(4)}(x) \) Continuing this process, we find that: - \( f^{(3)}(0) = 0 \) - \( f^{(4)}(0) \) will be calculated similarly. ### Step 7: Evaluate \( f^{(4)}(0) \) After evaluating, we find: \[ f^{(4)}(0) \neq 0 \] ### Conclusion Since \( f^{(2m)}(0) \neq 0 \) when \( 2m = 4 \), we have: \[ m = 2 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of f(x)=k at x=0 and x=2.

Let f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x) denotes n ^(th) derivative of f evaluated at x. Then which of the following hold ?

Find the derivative of "f"("x")="k a t x"=0" and x"=5.

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0

Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^n(x) denotes the n^(th) derivativeof f(x) w.r.t x then then value of n is

Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1 , then derivative of f(x) with respect to x, is

Find derivative of f(e^("tan"x)) w.r.t. x at x = 0. It is given that f(1) = 5

If f(x)=(4+x)^(n),"n" epsilonN and f^(r)(0) represents the r^(th) derivative of f(x) at x=0 , then the value of sum_(r=0)^(oo)((f^(r)(0)))/(r!) is equal to

Let f : R to and f (x) = (x (x^(4) + 1) (x+1) +x ^(4)+2)/(x^(2) +x+1), then f (x) is :

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  2. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  3. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  4. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  5. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  6. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  7. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  8. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  9. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  10. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  11. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  12. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  13. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  14. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  15. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of point of function f (x) = min (...

    Text Solution

    |