Home
Class 12
MATHS
If x = cos theta and y = sin^(3) theta, ...

If `x = cos theta and y = sin^(3) theta,` then `|(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2)` is:

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( | \frac{d^2y}{dx^2} + \left( \frac{dy}{dx} \right)^2 | \) at \( \theta = \frac{\pi}{2} \) given that \( x = \cos \theta \) and \( y = \sin^3 \theta \). ### Step 1: Find \( \frac{dx}{d\theta} \) and \( \frac{dy}{d\theta} \) Given: - \( x = \cos \theta \) - \( y = \sin^3 \theta \) Differentiating both with respect to \( \theta \): \[ \frac{dx}{d\theta} = -\sin \theta \] \[ \frac{dy}{d\theta} = 3\sin^2 \theta \cos \theta \] ### Step 2: Find \( \frac{dy}{dx} \) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{3\sin^2 \theta \cos \theta}{-\sin \theta} = -3\sin \theta \cos \theta \] ### Step 3: Find \( \frac{d^2y}{dx^2} \) To find \( \frac{d^2y}{dx^2} \), we differentiate \( \frac{dy}{dx} \) with respect to \( \theta \): \[ \frac{d}{d\theta} \left( -3\sin \theta \cos \theta \right) = -3 \left( \cos^2 \theta - \sin^2 \theta \right) \] Now, we apply the chain rule again: \[ \frac{d^2y}{dx^2} = \frac{d}{d\theta} \left( -3(\cos^2 \theta - \sin^2 \theta) \right) \cdot \frac{1}{\frac{dx}{d\theta}} \] Substituting \( \frac{dx}{d\theta} \): \[ \frac{d^2y}{dx^2} = -3(\cos^2 \theta - \sin^2 \theta) \cdot \frac{1}{-\sin \theta} = \frac{3(\cos^2 \theta - \sin^2 \theta)}{\sin \theta} \] ### Step 4: Evaluate at \( \theta = \frac{\pi}{2} \) At \( \theta = \frac{\pi}{2} \): - \( \sin \frac{\pi}{2} = 1 \) - \( \cos \frac{\pi}{2} = 0 \) Thus: \[ \frac{dy}{dx} = -3(1)(0) = 0 \] \[ \frac{d^2y}{dx^2} = \frac{3(0^2 - 1^2)}{1} = -3 \] ### Step 5: Substitute into the expression Now we substitute into the expression: \[ \left| \frac{d^2y}{dx^2} + \left( \frac{dy}{dx} \right)^2 \right| = \left| -3 + 0^2 \right| = \left| -3 \right| = 3 \] ### Final Answer The final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If x +y= 3-cos4theta and x-y=4sin2theta then

If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2) is

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(2)) =?

If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=a(1-cos^3theta) , y=a\ sin^3theta , prove that (d^2y)/(dx^2)=(32)/(27\ a) at theta=pi/6 .

If x=costheta , y=s in^3theta , prove that y\ (d^2y)/(dx^2)+((dy)/(dx))^2=3\ s in^2theta(5\ cos^2theta-1) .

Find dy/dx x=a\ cos^3theta , y=a\ sin^3theta

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  2. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  3. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  4. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  5. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  6. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  7. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  8. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  9. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  10. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  11. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  12. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  13. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  14. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  15. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of point of function f (x) = min (...

    Text Solution

    |