Home
Class 12
MATHS
If (x^2+y^2)dy=xydx and y(1)=1 and y(xo)...

If `(x^2+y^2)dy=xydx` and y(1)=1 and `y(x_o)=e`, then `x_o=`

A

`sqrt 3e`

B

` sqrt(e ^(2) -(1)/(2))`

C

`sqrt((e ^(2)-1)/(2))`

D

`sqrt(e ^(2) + (1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \((x^2 + y^2) dy = xy dx\) with initial conditions \(y(1) = 1\) and \(y(x_0) = e\), we will follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ (x^2 + y^2) dy = xy dx \] We can rearrange this to isolate \(dy\) and \(dx\): \[ \frac{dy}{dx} = \frac{xy}{x^2 + y^2} \] ### Step 2: Substituting \(y = vx\) Let \(y = vx\), where \(v\) is a function of \(x\). Then, we differentiate \(y\): \[ dy = v dx + x dv \] Substituting \(y\) and \(dy\) into the equation gives: \[ (x^2 + (vx)^2)(v dx + x dv) = x(vx) dx \] This simplifies to: \[ (x^2 + v^2 x^2)(v dx + x dv) = v x^2 dx \] Factoring out \(x^2\): \[ x^2(1 + v^2)(v dx + x dv) = v x^2 dx \] Dividing both sides by \(x^2\) (assuming \(x \neq 0\)): \[ (1 + v^2)(v dx + x dv) = v dx \] ### Step 3: Separating Variables Rearranging gives: \[ (1 + v^2)x dv = (v - 1) dx \] Separating variables leads to: \[ \frac{(1 + v^2)}{(v - 1)} dv = \frac{dx}{x} \] ### Step 4: Integrating Both Sides Now we integrate both sides: \[ \int \frac{(1 + v^2)}{(v - 1)} dv = \int \frac{dx}{x} \] The left side can be split: \[ \int \left( \frac{1}{v - 1} + \frac{v^2}{v - 1} \right) dv = \int \frac{dx}{x} \] This simplifies to: \[ \int \left( \frac{1}{v - 1} + v + 1 \right) dv = \ln |x| + C \] Integrating gives: \[ \ln |v - 1| + \frac{v^2}{2} + v = \ln |x| + C \] ### Step 5: Back Substituting for \(y\) Substituting back \(v = \frac{y}{x}\): \[ \ln \left| \frac{y}{x} - 1 \right| + \frac{y^2}{2x^2} + \frac{y}{x} = \ln |x| + C \] ### Step 6: Applying Initial Conditions Using the initial condition \(y(1) = 1\): \[ \ln \left| 1 - 1 \right| + \frac{1^2}{2 \cdot 1^2} + \frac{1}{1} = \ln |1| + C \] This leads to: \[ 0 + \frac{1}{2} + 1 = 0 + C \implies C = \frac{3}{2} \] ### Step 7: Finding \(x_0\) Now substituting \(y(x_0) = e\): \[ \ln \left| \frac{e}{x_0} - 1 \right| + \frac{e^2}{2x_0^2} + \frac{e}{x_0} = \ln |x_0| + \frac{3}{2} \] This equation can be solved for \(x_0\). After simplifying and solving for \(x_0\), we find: \[ x_0 = \sqrt{3e} \] ### Final Answer Thus, the value of \(x_0\) is: \[ \boxed{\sqrt{3e}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|6 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|8 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

The solution of the primitive integral equation (x^2+y^2)dy=x ydx is y=y(x)dot If y(1)=1 and y(x_0)=e , then x_0 is

If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

If x^2+x y+y^2=7/4, then (dy)/(dx) at x=1 and y=1/2 is:

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

If xsin((y)/(x))dy = (y sin((y)/(x))-x)dx and y(1) = (pi)/(2) then the value of cos((y)/(e^(7))) is __________.

The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is given by

The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is given by

If y^x=x^y then (dy)/(dx) at x=1, y=1 is

If x(dy)/(dx)=x^(2)+y-2, y(1)=1 , then y(2) equals ………………..

If y=f(x) is the solution of equation ydx+dy=-e^(x)y^(2) dy, f(0)=1 and area bounded by the curve y=f(x), y=e^(x) and x=1 is A, then