Home
Class 12
MATHS
Let y=f (x) and x/y (dy)/(dx) =(3x ^(2)-...

Let `y=f (x) and x/y (dy)/(dx) =(3x ^(2)-y)/(2y-x^(2)),f(1)=1` then the possible value of `1/3 f(3)` equals :

A

9

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation and find the value of \( \frac{1}{3} f(3) \), we will follow these steps: ### Step 1: Write the given equation The given equation is: \[ \frac{x}{y} \frac{dy}{dx} = \frac{3x^2 - y}{2y - x^2} \] ### Step 2: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ x(2y - x^2) \frac{dy}{dx} = y(3x^2 - y) \] ### Step 3: Rearrange the equation Rearranging the equation, we have: \[ x(2y) \frac{dy}{dx} - x(x^2) \frac{dy}{dx} = 3xy^2 - y^2 \] This simplifies to: \[ 2xy \frac{dy}{dx} - x^3 \frac{dy}{dx} = 3xy^2 - y^2 \] ### Step 4: Group terms involving \( dy \) and \( dx \) Rearranging gives: \[ (2xy - x^3) \frac{dy}{dx} = 3xy^2 - y^2 \] Now, we can separate variables: \[ \frac{dy}{dx} = \frac{3xy^2 - y^2}{2xy - x^3} \] ### Step 5: Separate variables We can rewrite this as: \[ \frac{dy}{y^2} = \frac{3x - 1}{2x - x^2} dx \] ### Step 6: Integrate both sides Integrating both sides: \[ \int \frac{dy}{y^2} = \int \frac{3x - 1}{2x - x^2} dx \] The left side integrates to: \[ -\frac{1}{y} = \int \frac{3x - 1}{2x - x^2} dx \] ### Step 7: Solve the right-hand side integral To solve the right-hand side, we can use partial fractions or substitution. However, for simplicity, we can integrate directly: \[ -\frac{1}{y} = \text{(integral result)} + C \] ### Step 8: Apply the initial condition Given \( f(1) = 1 \), we substitute \( x = 1 \) and \( y = 1 \) to find \( C \): \[ -\frac{1}{1} = \text{(integral result at } x=1) + C \] This will help us find the constant \( C \). ### Step 9: Solve for \( f(3) \) After finding \( C \), we can express \( y \) in terms of \( x \) and find \( f(3) \): \[ y = f(x) \] Substituting \( x = 3 \) gives us \( f(3) \). ### Step 10: Calculate \( \frac{1}{3} f(3) \) Finally, we compute: \[ \frac{1}{3} f(3) \] ### Final Answer The value of \( \frac{1}{3} f(3) \) is \( 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|6 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|8 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(x+y+1)/(2x+2y+3)

If f(x) = x/(x-1)=1/y then the value of f(y) is

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value of f(1) is

If the straight line y=x meets y=f(x) at P, where f(x) is a solution of the differential equation (dy)/(dx)=(x^(2)+xy)/(x^(2)+y^(2)) such that f(1)=3 , then the value of f'(x) at the point P is

dy/dx=(x-y+1)/(2x-2y+3)

For y gt 0 and x in R, ydx + y^(2)dy = xdy where y = f(x). If f(1)=1, then the value of f(-3) is

Let y=f(x) and x=(1)/(z)." If "(d^(2)y)/(dx^(2))=lamda_(z^(3))(dy)/(dz)+z^(4)(d^(2)y)/(dz^(2)) , then the value of lamda is

If y=f(x) is solution of differentiable equation (dy)/(dx)=y/x((1-3x^(2)y^(3)))/((2x^(2)y^(3)+1)) , then ( f(x).x)^(3) is equal to

If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))y=(3x^(2))/(1+x^(2)) where f(1)=1 , then f(2) is equal to