Home
Class 12
MATHS
Let A = MINIMUM (x^2-2x+7),x in R and B...

Let `A = MINIMUM (x^2-2x+7),x in R and B = MINIMUM ( x^2-2x+7),x in [2,oo),` then: `(log)_((B-A))(A+B)` is not defined `A+B=13` `(log)_((2B-A))A<1` (d) `(log)_((2A-B))A >1`

A

`log_((B-A))(A+B)` is not defined

B

`A+B=13`

C

`log_((2B-A))A lt 1`

D

`log_((2A-B))A gt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum values \( A \) and \( B \) from the given quadratic expression and then evaluate the logarithmic expressions. ### Step 1: Find \( A \) We need to find the minimum value of the function \( f(x) = x^2 - 2x + 7 \) for \( x \in \mathbb{R} \). 1. **Differentiate the function**: \[ f'(x) = 2x - 2 \] 2. **Set the derivative to zero to find critical points**: \[ 2x - 2 = 0 \implies x = 1 \] 3. **Evaluate the function at the critical point**: \[ A = f(1) = 1^2 - 2 \cdot 1 + 7 = 1 - 2 + 7 = 6 \] ### Step 2: Find \( B \) Now we need to find the minimum value of the same function but for \( x \in [2, \infty) \). 1. **Evaluate the function at the endpoint \( x = 2 \)**: \[ B = f(2) = 2^2 - 2 \cdot 2 + 7 = 4 - 4 + 7 = 7 \] ### Step 3: Calculate \( A + B \) Now we can calculate \( A + B \): \[ A + B = 6 + 7 = 13 \] ### Step 4: Evaluate the logarithmic expressions 1. **Check if \( \log_{(B-A)}(A+B) \) is defined**: \[ B - A = 7 - 6 = 1 \quad \text{(logarithm base cannot be 1)} \] Therefore, \( \log_{(B-A)}(A+B) \) is not defined. 2. **Check \( \log_{(2B-A)}(A) < 1 \)**: \[ 2B - A = 2 \cdot 7 - 6 = 14 - 6 = 8 \] \[ \log_{8}(6) < 1 \quad \text{(since 8 is greater than 6)} \] 3. **Check \( \log_{(2A-B)}(A) > 1 \)**: \[ 2A - B = 2 \cdot 6 - 7 = 12 - 7 = 5 \] \[ \log_{5}(6) > 1 \quad \text{(since 5 is less than 6)} \] ### Summary of Results - \( A = 6 \) - \( B = 7 \) - \( A + B = 13 \) - \( \log_{(B-A)}(A+B) \) is not defined. - \( \log_{(2B-A)}(A) < 1 \) is true. - \( \log_{(2A-B)}(A) > 1 \) is true.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

Let X minimum (x^(2)-2x+7),c inRand B="Minimum"(x^(2)-2x+7),x in[2,oo), then:

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

Let f(x)=2x-tan^-1 x- ln(x+sqrt(1+x^2)); x in R, then

If A = x^2+1/x^2 , B = x-1/x then minimum value of A/B is

If minimum of f(x)=(a)/(x)+bx at x=2 is 2, then (a, b) -= ….

Given log_(10)2 = a and log_(10)3 = b . If 3^(x+2) = 45 , then the value of x in terms of a and b is-

If b gt 1, x gt 0 and (2x)^(log_(b) 2)-(3x)^(log_(b) 3)=0 , then x is

Assertion (A) : If x+(x^(2))/(2)+(x^(3))/(3)+………oo=log((7)/(6)) then x=(1)/(7) Reason (R ) : If |x| lt 1 , then x+(x^(2))/(2)+(x^(3))/(3)+…..oo=log((1)/(1-x))

The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo) (b) (1,(11)/7) (1,7/3) (d) (1,7/5)