Home
Class 12
MATHS
Let a, b,c are respectively the sines an...

Let a, b,c are respectively the sines and p, q, r are respectively the consines of `alpha, alpha+(2pi)/(3) and alpha+(4pi)/(3)`, then :
Q. The value of `(a+b+c)` is :

A

0

B

`(3)/(4)`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a + b + c \), where \( a = \sin(\alpha) \), \( b = \sin\left(\alpha + \frac{2\pi}{3}\right) \), and \( c = \sin\left(\alpha + \frac{4\pi}{3}\right) \). ### Step 1: Define the values Let: - \( a = \sin(\alpha) \) - \( b = \sin\left(\alpha + \frac{2\pi}{3}\right) \) - \( c = \sin\left(\alpha + \frac{4\pi}{3}\right) \) ### Step 2: Write the expression for \( a + b + c \) We need to calculate: \[ a + b + c = \sin(\alpha) + \sin\left(\alpha + \frac{2\pi}{3}\right) + \sin\left(\alpha + \frac{4\pi}{3}\right) \] ### Step 3: Use the sine addition formula To simplify \( b \) and \( c \), we can use the sine addition formula: \[ \sin(x + y) = \sin x \cos y + \cos x \sin y \] Calculating \( b \) and \( c \): - For \( b \): \[ b = \sin\left(\alpha + \frac{2\pi}{3}\right) = \sin(\alpha)\cos\left(\frac{2\pi}{3}\right) + \cos(\alpha)\sin\left(\frac{2\pi}{3}\right) \] Using \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \) and \( \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \): \[ b = \sin(\alpha)\left(-\frac{1}{2}\right) + \cos(\alpha)\left(\frac{\sqrt{3}}{2}\right) = -\frac{1}{2}\sin(\alpha) + \frac{\sqrt{3}}{2}\cos(\alpha) \] - For \( c \): \[ c = \sin\left(\alpha + \frac{4\pi}{3}\right) = \sin(\alpha)\cos\left(\frac{4\pi}{3}\right) + \cos(\alpha)\sin\left(\frac{4\pi}{3}\right) \] Using \( \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2} \) and \( \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} \): \[ c = \sin(\alpha)\left(-\frac{1}{2}\right) + \cos(\alpha)\left(-\frac{\sqrt{3}}{2}\right) = -\frac{1}{2}\sin(\alpha) - \frac{\sqrt{3}}{2}\cos(\alpha) \] ### Step 4: Combine \( a + b + c \) Now substituting \( b \) and \( c \) into \( a + b + c \): \[ a + b + c = \sin(\alpha) + \left(-\frac{1}{2}\sin(\alpha) + \frac{\sqrt{3}}{2}\cos(\alpha)\right) + \left(-\frac{1}{2}\sin(\alpha) - \frac{\sqrt{3}}{2}\cos(\alpha)\right) \] ### Step 5: Simplify the expression Combining the terms: \[ a + b + c = \sin(\alpha) - \frac{1}{2}\sin(\alpha) - \frac{1}{2}\sin(\alpha) + \frac{\sqrt{3}}{2}\cos(\alpha) - \frac{\sqrt{3}}{2}\cos(\alpha) \] The \( \sin(\alpha) \) terms cancel out: \[ = \sin(\alpha) - \sin(\alpha) = 0 \] ### Conclusion Thus, the value of \( a + b + c \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

Let a, b,c are respectively the sines and p, q, r are respectively the consines of alpha, alpha+(2pi)/(3) and alpha+(4pi)/(3) , then : Q. The value of (ab+bc+ca) is :

Let a, b,c are respectively the sines and p, q, r are respectively the consines of alpha, alpha+(2pi)/(3) and alpha+(4pi)/(3) , then : Q. The value of (qc-rb) is :

If a=b cos((2pi)/3)= c cos((4pi)/3), then write the value of a b+b c+c a

Show that 4 sin alpha.sin (alpha + pi/3) sin (alpha + 2pi/3) = sin 3alpha

Verify : "cosec "alpha=1+cot^(2)alpha" if "alpha=(pi)/(3) .

If a , b and c b respectively the pth , qth and rth terms of an A.P. prove that a(q-r) +b(r-p) +c (p-q) =0

If the roots of the equation px ^(2) +qx + r=0, where 2p , q, 2r are in G.P, are of the form alpha ^(2), 4 alpha-4. Then the value of 2p + 4q+7r is :

Let alpha and beta be such that pi < alpha-beta<3pi, If sinalpha+sinbeta=-(21)/(65) and cosalpha+cosbeta=-(27)/(65) , then the value of cos(alpha-beta)/2 is (a) -3/(sqrt(130)) (b) 3/(sqrt(130)) (c) 6/(25) (d) 6/(65)

If p^(th), q^(th), r^(th) , terms of a G.P. are the positive numbers a, b, c respectively then angle between the vectors log a^3 hat i + log b^3 hatj + log c^3 hatk and (q - r)hati + (r - p)hatj + (p - q) hatk is: (a) pi/2 (b) pi/3 (c) 0 (d) sin^(-1)""(1)/(sqrt(p^2 + q^2 + r^2))

If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha is a. +-1 b. +-2 c. +-3 d. +-5