Home
Class 12
MATHS
Let a, b,c are respectively the sines an...

Let a, b,c are respectively the sines and p, q, r are respectively the consines of `alpha, alpha+(2pi)/(3) and alpha+(4pi)/(3)`, then :
Q. The value of `(ab+bc+ca)` is :

A

0

B

`-(3)/(4)`

C

`-(1)/(2)`

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ab + bc + ca \) where \( a, b, c \) are the sines of the angles \( \alpha, \alpha + \frac{2\pi}{3}, \alpha + \frac{4\pi}{3} \) respectively. ### Step 1: Define the values of \( a, b, c \) Let: - \( a = \sin(\alpha) \) - \( b = \sin\left(\alpha + \frac{2\pi}{3}\right) \) - \( c = \sin\left(\alpha + \frac{4\pi}{3}\right) \) ### Step 2: Use the sine addition formula Using the sine addition formula, we can express \( b \) and \( c \): - \( b = \sin\left(\alpha + \frac{2\pi}{3}\right) = \sin(\alpha)\cos\left(\frac{2\pi}{3}\right) + \cos(\alpha)\sin\left(\frac{2\pi}{3}\right) \) - \( c = \sin\left(\alpha + \frac{4\pi}{3}\right) = \sin(\alpha)\cos\left(\frac{4\pi}{3}\right) + \cos(\alpha)\sin\left(\frac{4\pi}{3}\right) \) ### Step 3: Calculate the values of \( \cos\left(\frac{2\pi}{3}\right) \) and \( \sin\left(\frac{2\pi}{3}\right) \) - \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \) - \( \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \) - \( \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2} \) - \( \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} \) ### Step 4: Substitute the values of \( b \) and \( c \) Now substituting these values into \( b \) and \( c \): - \( b = \sin(\alpha) \left(-\frac{1}{2}\right) + \cos(\alpha) \left(\frac{\sqrt{3}}{2}\right) = -\frac{1}{2} \sin(\alpha) + \frac{\sqrt{3}}{2} \cos(\alpha) \) - \( c = \sin(\alpha) \left(-\frac{1}{2}\right) + \cos(\alpha) \left(-\frac{\sqrt{3}}{2}\right) = -\frac{1}{2} \sin(\alpha) - \frac{\sqrt{3}}{2} \cos(\alpha) \) ### Step 5: Calculate \( ab + bc + ca \) Now we can calculate \( ab + bc + ca \): \[ ab = \sin(\alpha) \left(-\frac{1}{2} \sin(\alpha) + \frac{\sqrt{3}}{2} \cos(\alpha)\right) \] \[ bc = \left(-\frac{1}{2} \sin(\alpha) + \frac{\sqrt{3}}{2} \cos(\alpha)\right)\left(-\frac{1}{2} \sin(\alpha) - \frac{\sqrt{3}}{2} \cos(\alpha)\right) \] \[ ca = \left(-\frac{1}{2} \sin(\alpha) - \frac{\sqrt{3}}{2} \cos(\alpha)\right) \sin(\alpha) \] ### Step 6: Simplify the expression After substituting and simplifying the expressions, we can combine like terms. ### Final Calculation After performing all calculations and simplifications, we find that: \[ ab + bc + ca = -\frac{3}{4} \] ### Conclusion Thus, the final answer is: \[ \boxed{-\frac{3}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

Let a, b,c are respectively the sines and p, q, r are respectively the consines of alpha, alpha+(2pi)/(3) and alpha+(4pi)/(3) , then : Q. The value of (a+b+c) is :

Let a, b,c are respectively the sines and p, q, r are respectively the consines of alpha, alpha+(2pi)/(3) and alpha+(4pi)/(3) , then : Q. The value of (qc-rb) is :

If a = b cos "" ( 2 pi)/ (3) = c cos "" (4 pi)/( 3) , then write the value of ab + bc + ca

Show that 4 sin alpha.sin (alpha + pi/3) sin (alpha + 2pi/3) = sin 3alpha

Verify : "cosec "alpha=1+cot^(2)alpha" if "alpha=(pi)/(3) .

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If the roots of the equation px ^(2) +qx + r=0, where 2p , q, 2r are in G.P, are of the form alpha ^(2), 4 alpha-4. Then the value of 2p + 4q+7r is :

If a, b, c be the pth, qth and rth terms respectively of a HP, show that the points (bc, p), (ca, q) and (ab, r) are collinear.

If 0 lt alpha lt (pi)/(3) , then prove that alpha (sec alpha) lt (2pi)/(3).

If (3pi)/2 < alpha < 2pi then the modulus argument of (1+cos 2alpha)+i sin2alpha