Home
Class 12
MATHS
If 2cos theta+ 2 sqrt(2)=3 sec theta, wh...

If `2cos theta+ 2 sqrt(2)=3 sec theta`, where `theta in (0, 2pi)`, then which of the following can be correct ?

A

` cos theta = (1)/(sqrt(2)) `

B

` tan theta = 1 `

C

` sin theta = -(1)/(sqrt(2)) `

D

` cot theta = - 1 `

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

If 2 cos theta + 2 sqrt(2) = 3 sec theta where theta in (0, 2 pi) then which of the following can be correct ?

If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{pi//2, pi, 3pi//2} If the equation has no real roots, then

If beta is one of the angles between the normals to the ellipse, x^2+3y^2=9 at the points (3 cos theta, sqrt(3) sin theta)" and "(-3 sin theta, sqrt(3) cos theta), theta in (0,(pi)/(2)) , then (2 cot beta)/(sin 2 theta) is equal to:

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

Consider the equation sec theta +cosec theta=a, theta in (0, 2pi) -{pi//2, pi, 3pi//2} If the equation has four distinct real roots, then (a) |a| gt 2sqrt(2) (b) |a| lt 2sqrt(2) (c) a ge -2sqrt(2) (d) none of these

cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/(2)

Let f : (-1, 1) -> R be such that f(cos4theta) = 2/(2-sec^2theta for theta in (0, pi/4) uu (pi/4, pi/2) . Then the value(s) of f(1/3) is/are

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)