Home
Class 12
MATHS
Consider f, g and h be three real valued...

Consider f, g and h be three real valued function defined on R.
Let `f(x)= sin 3x + cos x , g(x)= cos 3x + sin x ` and ` h(x) = f^(2)(x) + g^(2)(x) `
Q. General solution of the equation ` h(x) = 4 ` , is :
[where ` n in I ` ]

A

`(pi)/(8)`

B

`(pi)/(4)`

C

`(pi)/(6)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the general solution of the equation \( h(x) = 4 \) where \( h(x) = f^2(x) + g^2(x) \). ### Step 1: Define the functions We are given: - \( f(x) = \sin(3x) + \cos(x) \) - \( g(x) = \cos(3x) + \sin(x) \) ### Step 2: Write the expression for \( h(x) \) Using the definitions of \( f(x) \) and \( g(x) \): \[ h(x) = f^2(x) + g^2(x) = (\sin(3x) + \cos(x))^2 + (\cos(3x) + \sin(x))^2 \] ### Step 3: Expand \( h(x) \) Now we will expand both squares: 1. For \( f^2(x) \): \[ f^2(x) = (\sin(3x) + \cos(x))^2 = \sin^2(3x) + \cos^2(x) + 2\sin(3x)\cos(x) \] 2. For \( g^2(x) \): \[ g^2(x) = (\cos(3x) + \sin(x))^2 = \cos^2(3x) + \sin^2(x) + 2\cos(3x)\sin(x) \] Combining these, we have: \[ h(x) = \sin^2(3x) + \cos^2(x) + 2\sin(3x)\cos(x) + \cos^2(3x) + \sin^2(x) + 2\cos(3x)\sin(x) \] ### Step 4: Use the Pythagorean identity Using the identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \): \[ h(x) = 1 + 1 + 2\sin(3x)\cos(x) + 2\cos(3x)\sin(x) \] This simplifies to: \[ h(x) = 2 + 2(\sin(3x)\cos(x) + \cos(3x)\sin(x)) \] ### Step 5: Use the sine addition formula Using the sine addition formula \( \sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b) \): \[ h(x) = 2 + 2\sin(4x) \] ### Step 6: Set \( h(x) = 4 \) Now we set the equation: \[ 2 + 2\sin(4x) = 4 \] ### Step 7: Solve for \( \sin(4x) \) Subtract 2 from both sides: \[ 2\sin(4x) = 2 \] Divide by 2: \[ \sin(4x) = 1 \] ### Step 8: Find the general solution for \( \sin(4x) = 1 \) The sine function equals 1 at: \[ 4x = \frac{\pi}{2} + 2n\pi \quad \text{for } n \in \mathbb{Z} \] Dividing by 4 gives: \[ x = \frac{\pi}{8} + \frac{n\pi}{2} \] ### Final Answer Thus, the general solution of the equation \( h(x) = 4 \) is: \[ x = \frac{\pi}{8} + \frac{n\pi}{2}, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|11 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). h(x) = 4

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function g=h(x) is increasing, is

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function h(x) is increasing, is

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, Number of point (s) where the graphs of the two function, y=f(x) and y=g(x) intersects in [0,pi] , is

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Let f and g be two real values functions defined by f(x)= x + 1 and g(x) = 2x-3 . Find 1) f+g , 2) f-g , 3) f/g

Let f and g be two real values functions defined by f ( x ) = x + 1 and g ( x ) = 2 x − 3 . Find 1) f + g , 2) f − g , 3) f / g

Suppose f, g and h be three real valued function defined on R Let f(x) =2x+|x| g(x) =1/3(2x-|x|) h(x) =f(g(x)) The range of the function k(x) = 1 + 1/pi(cos^(-1)h(x) + cot^(-1)(h(x))) is equal to

The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos2x-sin3x sin 4x) , is

Consider f,g and h be three real valued differentiable functions defined on R. Let g(x)=x^(3)+g''(1)x^(3)+(3g'(1)-g''(1)-1)x+3g'(1) f(x)=xg(x)-12x+1 and f(x)=(h(x))^(2), where g(0)=1 The function y=f(x) has