Home
Class 12
MATHS
Let f( theta) = ( cos theta - "cos" (pi...

Let ` f( theta) = ( cos theta - "cos" (pi)/(8))(cos theta - "cos" (3 pi)/(8))(cos theta - "cos" (5 pi)/(8) )(cos theta - "cos" (7pi)/(8))` then :

A

maximum value of ` f(theta ) AA theta in R ` is ` (1)/(4) `

B

maximum value of ` f(theta) AA theta in R ` is ` (1)/(8) `

C

` f(0)= (1)/(8) `

D

Number of principle solutions of ` f(theta) = 0 ` is 8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(\theta) = \left( \cos \theta - \cos \frac{\pi}{8} \right) \left( \cos \theta - \cos \frac{3\pi}{8} \right) \left( \cos \theta - \cos \frac{5\pi}{8} \right) \left( \cos \theta - \cos \frac{7\pi}{8} \right) \). ### Step 1: Rewrite the cosines We can rewrite \( \cos \frac{5\pi}{8} \) and \( \cos \frac{7\pi}{8} \) using the identity \( \cos(\pi - x) = -\cos(x) \): - \( \cos \frac{5\pi}{8} = \cos\left(\pi - \frac{3\pi}{8}\right) = -\cos \frac{3\pi}{8} \) - \( \cos \frac{7\pi}{8} = \cos\left(\pi - \frac{\pi}{8}\right) = -\cos \frac{\pi}{8} \) Thus, we can express \( f(\theta) \) as: \[ f(\theta) = \left( \cos \theta - \cos \frac{\pi}{8} \right) \left( \cos \theta - \cos \frac{3\pi}{8} \right) \left( \cos \theta + \cos \frac{3\pi}{8} \right) \left( \cos \theta + \cos \frac{\pi}{8} \right) \] ### Step 2: Use the identity for products Using the identity \( (a - b)(a + b) = a^2 - b^2 \), we can simplify: \[ f(\theta) = \left( \cos^2 \theta - \cos^2 \frac{\pi}{8} \right) \left( \cos^2 \theta - \cos^2 \frac{3\pi}{8} \right) \] ### Step 3: Substitute \( \cos^2 \frac{3\pi}{8} \) We know that \( \cos \frac{3\pi}{8} = \sin \frac{\pi}{8} \), so: \[ \cos^2 \frac{3\pi}{8} = \sin^2 \frac{\pi}{8} \] Thus, we can rewrite \( f(\theta) \) as: \[ f(\theta) = \left( \cos^2 \theta - \cos^2 \frac{\pi}{8} \right) \left( \cos^2 \theta - \sin^2 \frac{\pi}{8} \right) \] ### Step 4: Expand the product Now, we expand this product: \[ f(\theta) = \cos^4 \theta - \cos^2 \frac{\pi}{8} \cos^2 \theta - \sin^2 \frac{\pi}{8} \cos^2 \theta + \cos^2 \frac{\pi}{8} \sin^2 \frac{\pi}{8} \] \[ = \cos^4 \theta - \cos^2 \theta \left( \cos^2 \frac{\pi}{8} + \sin^2 \frac{\pi}{8} \right) + \cos^2 \frac{\pi}{8} \sin^2 \frac{\pi}{8} \] Using the identity \( \cos^2 \frac{\pi}{8} + \sin^2 \frac{\pi}{8} = 1 \): \[ f(\theta) = \cos^4 \theta - \cos^2 \theta + \cos^2 \frac{\pi}{8} \sin^2 \frac{\pi}{8} \] ### Step 5: Factor out \( \cos^2 \theta \) Let \( x = \cos^2 \theta \): \[ f(\theta) = x^2 - x + \cos^2 \frac{\pi}{8} \sin^2 \frac{\pi}{8} \] ### Step 6: Find the maximum value The maximum value occurs when \( x = \frac{1}{2} \) (vertex of the quadratic): \[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} + \cos^2 \frac{\pi}{8} \sin^2 \frac{\pi}{8} \] ### Step 7: Calculate \( f(0) \) Substituting \( \theta = 0 \): \[ f(0) = \left( 1 - \cos \frac{\pi}{8} \right) \left( 1 - \cos \frac{3\pi}{8} \right) \left( 1 + \cos \frac{3\pi}{8} \right) \left( 1 + \cos \frac{\pi}{8} \right) \] This will yield \( f(0) = \frac{1}{8} \). ### Step 8: Find the number of solutions for \( f(\theta) = 0 \) Setting \( f(\theta) = 0 \) leads to solving: \[ \cos^4 \theta - \cos^2 \theta + \cos^2 \frac{\pi}{8} \sin^2 \frac{\pi}{8} = 0 \] This will give us the number of principal solutions.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|3 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costheta-cos(7pi)/8)=lambdacos4theta, then the value of lambda is _____.

16(costheta-cos(pi/8))(costheta-cos((3pi)/8))(costheta-cos((5pi)/8)) (costheta-cos((7pi)/8))= lambdacos4theta, then the value of lambda is _____.

Prove that (cos(pi +theta)cos (-theta))/(cos(pi-theta) cos (pi/2+theta))=-cot theta

int_(0)^(1) (sin theta (cos^(2) theta- cos^(2) pi//5) (cos^(2) theta - cos^(2) 2 pi //5))/(sin 5 theta)d theta

If theta=20^(@) , then 8cos^(3)theta-6 cos theta is

Prove that : cos^2 theta+ cos^2 ((2pi)/3 -theta) + cos^2 ((2pi)/3 +theta) = 3/2

Prove that cos 4theta–cos 4alpha = 8(cos theta-cos alpha)(cos theta+ cos alpha )(cos theta -sin alpha)(cos theta+sin alpha)

Prove that cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + cos ^(4) ""(5pi)/(8) + cos ^(4) "" (7pi)/(8) = (3)/(2)

The function f(theta) = cos (pi sin^(2) theta) , is

If theta=(pi)/(7), show that cos theta cos 2theta cos 3 theta = (1)/(8) .